

Présentée à l’École normale supérieure

Algorithmes et structures de données d’approximation et
probabilistes pour le traitement des chaînes de caractères

Approximation and Randomised String Processing

Présentation des travaux par
Tatiana Starikovskaya
Le 15 septembre 2025

Discipline
Informatique

Composition du jury :

Antoine AMARILLI
Maître de conférences, Télécom Paris	 Rapporteur

Nadia PISANTI
Prof. Associé, Université de Pise	 Rapporteuse

Mikaël SALSON
Professeur, Université de Lille	 	 Rapporteur

Guillaume FERTIN
Professeur, Nantes Université 	 Examinateur

Chien-Chung HUANG
DR CNRS, CNRS/ENS/PSL 	 	 Examinateur

Alantha NEWMAN
DR CNRS, CNRS/Université Grenoble Alpes Examinatrice

Luc SEGOUFIN
DR INRIA, INRIA/ENS/PSL 	 	 Examinateur

Acknowledgments

I defended my Ph.D. at Lomonosov Moscow State University in 2013, and at that
time including acknowledgements in one’s thesis was not permitted there, and I
would like to use this opportunity to thank many people I have met along the way.
Some names appear more than once in this text, reflecting the fact that I have had
the privilege of working with the same people in several different roles. If I have
forgotten to mention someone who has supported me along the way, it is entirely
unintentional and due only to my memory, not to lack of gratitude.

The journey to this thesis started more than thirty years ago when I was accepted
to my school, and I am immensely grateful to its director, Evgenia Grigorievna
Ermachkova. She gathered there some of the strongest teachers in math olympiads,
and through them and my fellow students I discovered the joy of mathematics. I
cannot do justice to all of my teachers by listing them here, but let me name at
least a few: Nazar Agahanov, Vladimir Dolnikov, Pavel Kozhevnikov, Boris Trushin,
Alexey Poyarkov — thank you!

I would also like to thank my scientific advisors during my studies and my
postdoc years, I would not be where I am without them: Maxim Babenko, Raphaël
Clifford, Gregory Kucherov, Frédéric Magniez, the late Mikhail Roytberg, whose
guidance I will always treasure, Alexei Semenov.

I find myself to be incredibly lucky to be a part of the Combinatorial Pattern
Matching community, who welcomed me when I was only starting my research ca-
reer. I couldn’t wish for more supportive, inspiring, and encouraging colleagues —
thank you! It is through this community that I got acquainted with two exception-
ally bright stringologists, Pawel Gawrychowski and Tomasz Kociumaka, who have
become close friends and collaborators, have deeply influenced my work, and accom-
panied me on many exciting journeys (and I hope there are many more journeys
ahead!). I am immensely grateful to them and to all the co-authors with whom I have
had the joy to collaborate on the research contained in this document and beyond:
Maxim A. Babenko, Gabriel Bathie, Raphaël Clifford, Vincent Cohen-Addad, Anne
Driemel, Bartlomiej Dudek, Taha El Ghazi, Jonas Ellert, Laurent Feuilloley, Eldar
Fischer, Allyx Fontaine, Dvir Fried, Moses Ganardi, Shay Golan, Garance Gourdel,
Adam Górkiewicz, Allan Grønlund Jørgensen, Danny Hucke, Ignat I. Kolesnichenko,
Roman Kolpakov, Tsvi Kopelowitz, Tomasz Kociumaka, Gregory Kucherov, Gad M.
Landau, Kasper Green Larsen, Markus Lohrey, Konstantinos Mamouras, Frédéric
Magniez, Kotaro Matsuda, Masakazu Tateshita, Yakov Nekrich, Ely Porat, Jakub

ii

Radoszewski, Benjamin Sach, Anna Selugina, Teresa Anna Steiner, Michal Svagerka,
Przemyslaw Uznanski, Hjalte Wedel Vildhøj.

I would also like to thank all my colleagues with whom I have exchanged ideas
but who are not yet my co-authors, and those who have provided crucial support
and advice at various stages of my career. Even though they may not appear in my
bibliography or curriculum vitae, their words of support and advice have often been
as important to my development as new scientific insights.

In addition to the broader international community, I am deeply grateful to DI-
ENS for providing me with such an exceptional working environment. I am thankful
to all my colleagues there who have contributed to make it a pleasant and inspiring
place to work. Teaching at DIENS has also been a delightful experience. I would like
to thank all the students who have made my classes lively and interesting, as well
as my colleagues, in particular, Pierre Aboulker, Gabriel Bathie, Anne Bouillard,
Taha El Ghazi, Jérôme Feret, Chien-Chung Huang, Paul Jeanmaire, Ky Nguyen,
Marc Pouzet, Pierre Senellart. I’ve learned a lot by working by your side, thank
you! My special thanks go to Lise-Marie Bivard, who has provided crucial support
for many administrative tasks since my arrival at ENS, helping me free up time to
do research.

Should this text serve its intended purpose, it will authorize me to direct re-
search. Because this path required me to gain co-supervision experience beforehand,
I warmly thank Nathanaël Fijakow, Chien-Chung Huang, and Pierre Peterlongo,
who agreed to co-advise PhD students with me, thereby giving me the opportu-
nity to gain valuable experience. In addition to those already mentioned above, I
would like to thank all the students, the PhDs and the postdocs who trusted me
to accompany them in their research journey, even before my habilitation: Gabriel
Bathie, Taha El Ghazi, Jonas Ellert, Garance Gourdel, Benoît Huftier, Wojciech
Janczewski, Alexander Loptev, Adrien Mathieu, Anna Selugina.

I gratefully acknowledge the financial support received from the Agence Na-
tionale de Recherche projects ANR-19-CE48-0016 and ANR-20-CE48-0001.

I thank the reviewers of this manuscript Antoine Amarilli, Nadia Pisanti, and
Mikaël Salson for accepting to perform this task. I would also like to thank Guil-
laume Fertin, Chien-Chung Huang, Alantha Newman and Luc Segoufin for accepting
to be members of the jury of this manuscript’s defence.

Last, but not least, I would like to thank my family and in particular my beloved
husband, who has always been supportive of my non-trivial choice of a career, and
my daughter, who, at her three years, has already “reviewed” so many papers for
me :-)

Contents

1 Research trajectory 1

2 Introduction 3
2.1 Modern-day challenges . 4

2.1.1 Massive string data . 4
2.1.2 Noisy or scattered data . 6

2.2 Contributions of the author . 8
2.2.1 Streaming pattern matching 8
2.2.2 Lower bounds for approximate text indexing 13
2.2.3 Formal languages membership 15

2.3 Organisation of the thesis . 20

3 Preliminaries 21
3.1 Distances . 22

4 Streaming algorithm for k-mismatch pattern matching 24
4.1 Small approximate period (ℓ ≤ k) case. 24
4.2 Large approximate period (ℓ > k) case. 26

5 Streaming algorithm for k-edit pattern matching 29
5.1 (Semi-)Streaming Algorithm for Pattern Matching with k Edits . . . 29

5.1.1 Greedy Alignments and Encodings 31
5.1.2 Edit Distance Sketches . 34

6 Lower bounds for approximate text indexing 38
6.1 Statements of the problems and existing lower bounds 38
6.2 Embedding from Hamming to edit distance: stoppers transform . . . 39
6.3 Conditional lower bounds for dictionary look-up 40
6.4 Pointer-machine lower bounds for dictionary look-up 41
6.5 Lower bounds for text indexing . 42

7 Streaming algorithms for regular expressions search 43
7.1 Statements of the problems . 43
7.2 Definitions and tools. 44
7.3 Overview of the algorithms . 46

iv Contents

8 Language Distance Problem 51
8.1 Statements of the problems and our results 51
8.2 Hamming distance, palindromes, and squares 52
8.3 Edit distance, palindromes, and squares 53

Bibliography 54

1 Research trajectory

In March 2013, I obtained a PhD degree at Lomonosov Moscow State University
(Moscow, Russia), for a thesis titled “Effective Algorithms for Specific Word Pro-
cessing Problems”. My thesis was co-supervised by Alexei Semenov (Lomonosov
Moscow State University) and Gregory Kucherov (CNRS and University Paris-Est
Marne-la-Vallée). After that, I worked as an Assistant Professor at the Computer
Science department of the Higher School of Economics in Moscow, Russia. In Jan-
uary 2015, I moved to Bristol University where I worked as a Research Associate
in the group of Raphaël Clifford. In September 2016, I moved to IRIF, where I
worked as a postdoc with Frédéric Magniez until, in September 2017, I joined École
Normale Supérieure as a Maître de conférences, where I’ve been working up to date.

My research interests have gradually evolved over time. My initial exposure to
stringology came through a lecture on Kolmogorov complexity by A. B. Sosinsky
at the summer camp for high school students “Modern Mathematics” in Dubna,
Russia. In my third year at Lomonosov State University, I chose Alexey Semenov
as my scientific advisor, attracted by his work on related topics. However, I soon
realised that I am more interested in the algorithmic aspects of stringology. To better
align with these interests, Alexey Semenov introduced me to Andrey Muchnik and
Mikhail Roytberg, who proposed an algorithmic problem in RNA folding: improving
the classical cubic-time dynamic programming algorithm [119]. Although I achieved
no improvement at the time (which is probably no wonder as the first subcubic-time
algorithm appeared only in FOCS 2017 [127]), this collaboration introduced me to
bioinformatics.

Concurrently, I attended Maxim Babenko’s course on string algorithms, which
led to a long-term collaboration and my entry into the broader field of algorithms on
strings. During my PhD, through Mikhail Roytberg’s collaboration with the CNRS
Interdisciplinary Scientific Center Poncelet, I met Gregory Kucherov, who became
my co-advisor and facilitated a research stay at the Laboratoire d’Informatique
Gaspard-Monge.

During the time I worked as an Assistant Professor at the Computer Science de-
partment of the Higher School of Economics in Moscow, Russia, I continued working
on algorithm in strings. My later postdoctoral work with Raphaël Clifford at the
University of Bristol introduced me to streaming algorithms, while discussions with
Frédéric Magniez sparked my interest in property testing. Today, my principal re-
search area is algorithms and data structures for efficient processing of strings and,

2 Chapter 1. Research trajectory

more generally, formal languages, with a focus on small-space algorithms, streaming
algorithms, property testing, and lower bounds.

Doctoral and scientific supervision During the course of my career, I have
been honoured to (co)-supervise multiple undergraduate-level research internships,
as well as three PhD students, Garance Gourdel (defended in October 2023), Gabriel
Bathie (defended in June 2025), and Taha El Ghazi (Expected defence date February
2027).

Invited talks It was my greatest pleasure to give invited talks at Jewels of Au-
tomata Theory 2024, “Randomness, Information, and Complexity” week 2024, CPM
2023, 18th Montoise Conference on Theoretical Computer Science, Highlights 2022,
DAAL Days 2022, ISAAC 2021, IWOCA 2021.

Community service Previously, I have served on the program committees of:
SODA 2026, MFCS 2026, STACS 2025, SeqBIM 2024, SPIRE 2024, IWOCA 2024,
WADS 2023, SeqBIM 2023, ICALP 2020, SOSA 2020, CPM 2019, CPM 2018, CPM
2017, SPIRE 2017, IWOCA 2016, CSR 2016, SPIRE 2015, CPM 2015, CPM 2014.
Together with P. Gawrychowski, I co-chaired CPM 2021.

2 Introduction

“All we have to decide is what to do with the time that is given us.”
J.R.R. Tolkien, The Fellowship of the Ring

This habilitation thesis focuses on algorithms and data structures for solving the
fundamental problem of pattern matching in massive and noisy string data, as well
as their applications.

The history of string algorithms originates from the pattern matching problem.
In its most basic form, the pattern matching problem assumes that a short string,
called the pattern, and a longer string, called the text , are given, and the goal is to
find all substrings of the text that are equal to the pattern. A common application
is keyword search in a PDF document. Efficient algorithms and data structures are
essential for such routine tasks, as users expect fast responses and minimal resource
usage for basic operations. In the seminal 1977 result [97], Knuth, Morris, and
Pratt showed the first linear-time and linear-space algorithm for pattern matching.
The asymptotic time and space complexities of this algorithm are optimal, since the
input must be read and stored. Since then, over 80 pattern matching algorithms
have been developed [63, 61, 62], aiming to optimize constants and to address diverse
computational settings.

The algorithms discussed above assume that the text cannot be preprocessed,
that is, the pattern and the text arrive simultaneously. A complementary formu-
lation assumes that the text arrives first and is preprocessed into a data structure
called a text index , which supports queries of the following form: given a pattern,
find all substrings of the text equal to the pattern. This approach is particularly
useful when multiple patterns need to be searched within a fixed text. The most
well-known text index is the suffix tree, introduced by Weiner [137]. It requires space
linear in the length of the text and supports queries in time linear in the length of
the pattern. The suffix tree represents all suffixes of the text, i.e. the substrings of
the text that start at an arbitrary position and extend till the end of the text, in
a tree-like structure. The suffixes are grouped together by their common prefixes,
enabling efficient pattern searches.

4 Chapter 2. Introduction

2.1 Modern-day challenges

Pattern matching has traditionally been applied in domains where data can be rep-
resented as a text, such as bioinformatics, information retrieval (e.g., in text and
music analysis), and digital security (e.g., in intrusion detection), among others.
However, modern data generation in these domains introduces new challenges, such
as handling input that is massive, fragmented, noisy, or constantly evolving. Nev-
ertheless, algorithms are still expected to function reliably and produce meaningful
results.

2.1.1 Massive string data

One of the primary challenges posed by modern string data is its volume. A partic-
ularly voluminous type of data is versioned or archival content. Several illustrative
examples follow. In 2022, the metadata from the revision history (excluding article
content) of the English Wikipedia pages alone occupied 75 gigabytes. In 2023, the
Software Heritage project [3], which aims to archive all software source code ever
produced, reported a storage volume of nearly 1 petabyte [140]. Similarly, bioin-
formatics maintains large-scale archives of string data. As of today, the European
Nucleotide Archive (ENA) has accumulated over 50 petabytes [1] of sequencing data.
The NCBI Sequence Read Archive (SRA) currently holds over 73 petabases [2] of
data, including 38 petabases publicly available, and continues to grow (see Fig-
ure 2.1).

Figure 2.1: Size of the Sequence Read Archive [2].

Classical algorithms and data structures, which assume that data is fully stored
in an uncompressed form, become infeasible at such scales. Nevertheless, appli-
cations still require effective methods for extracting meaningful information from

2.1. Modern-day challenges 5

such data. Two common approaches to storing and processing large-scale data are
distributed computing and cloud platforms, but these alone may be insufficient and
must be complemented by novel algorithmic and software tools [111]. This is due
to two main reasons. First, even the most powerful systems are constrained by the
slowing progress of semiconductor technology and the breakdown of Moore’s law,
making it difficult to keep pace with the exponential growth of data volumes. Sec-
ond, in the widely adopted “platform as a service” model, users are charged based
on resource consumption, which can become prohibitively expensive in the absence
of efficient algorithms. Moreover, in scenarios such as disease outbreaks in remote
areas (e.g., the 2014 Ebola virus epidemic in West Africa), access to cloud resources
may be unavailable, requiring on-site data analysis under severe computational con-
straints.

This thesis focuses on the particularly restrictive streaming model . In this model,
data items arrive sequentially, and previously seen items cannot be accessed unless
explicitly stored. All memory usage, including any space allocated to store infor-
mation about the input, contributes to the total space complexity. The overarching
goal is to minimize space usage (ideally to a polylogarithmic function of the input
size) while processing each item on-the-fly, resulting in highly efficient algorithms.

The study of small-space streaming algorithms for pattern matching began in
earnest with the work presented at FOCS 2009 [120]. That year, Porat and Porat in-
troduced a randomized algorithm for exact pattern matching in a stream, using only
O(logm) space and requiring O(logm) worst-case time per arriving symbol [120].
This result was subsequently simplified [60] and later improved in 2011 to achieve
constant time per arriving symbol [30]. Since then, streaming pattern matching
has received significant attention in the literature. A detailed review is provided in
Section 2.2.1.

Sometimes, designing an efficient streaming algorithm for certain pattern match-
ing problems might be computationally intractable. In this case, a less restrictive yet
still space-conscious alternative is the read-only model. In this setting, the algorithm
is allowed constant-time random access to the input, and the space complexity is
measured as the auxiliary memory beyond input storage. A foundational constant-
space approach to exact pattern matching was introduced by Karp and Rabin [94],
which appeared more than thirty years before the algorithm of Porat and Porat.
The algorithm of Karp and Rabin is randomised and uses a so-called fingerprint,
a hash function mapping strings to elements of a finite field, which, as we will see
later in Section 2.2.1, had a huge impact in streaming algorithms. Following this
work, several deterministic constant-space read-only algorithms for exact pattern
matching have been developed [32, 29, 55, 56, 57, 58, 79, 80, 126]. All read-only
algorithms mentioned above use time linear in the total length of the text and the
pattern.

6 Chapter 2. Introduction

2.1.2 Noisy or scattered data

To remain affordable in terms of time and cost, modern large-scale data genera-
tion methods often tolerate noise and fragmentation, posing additional challenges
for string processing. In pattern matching, a natural approach to handling noisy
or fragmented data is to search for substrings similar (rather than identical) to the
pattern. This problem has long been studied in stringology, albeit with a different
motivation: Even when the data is carefully collected and relatively noise-free, effi-
ciently identifying approximate matches continues to pose a challenge. For example,
given a gene, one may wish to identify whether a variant appears in a given genome.
This variant of pattern matching is referred to as approximate pattern matching .
The two most widely used similarity measures on strings are the Hamming and the
edit distances. Recall that the Hamming distance between two equal-length strings
is the number of mismatching pairs of characters of the strings. The edit distance of
two strings, not necessarily of equal lengths, is the smallest number of edits (char-
acter insertions, deletions, and substitutions) needed to transform one string into
the other. Below, we give a brief survey of previous work on approximate pattern
matching. Let n and m denote the lengths of the text and pattern, respectively.

Algorithms for the Hamming distance In general, computing Hamming dis-
tance is easier and is often regarded as a preliminary step toward solving the edit
distance problem. The first solution for approximate pattern matching under the
Hamming distance was given by Abrahamson [6] and, independently, Kosaraju [99];
based on the fast Fourier transform, it requires O(n

√
m logm) time to compute the

Hamming distance between the pattern and all the length-m substrings of the text.
Up to date, no algorithm has improved upon this time complexity for the general
version of approximate pattern matching under Hamming distance, although more
efficient solutions exist when the interest is restricted to distances not exceeding
a given threshold k, a variant known as the k-mismatch pattern matching . The
first algorithm for the k-mismatch problem was given by Landau and Vishkin [102],
who improved the running time to O(kn) using the technique known as “kangaroo
jumps”, which uses the suffix tree to compute the longest common prefix of two
suffixes in constant time. This bound was further improved by Amir et al. [12] who
showed two algorithms: One with running time O(n

√
k log k), and another with

running time Õ(n + k3n/m)1. Continuing this line of research, Clifford et al. [46]
presented an Õ(n+k2n/m)-time algorithm, while Gawrychowski and Uznański [78]
proposed a smooth trade-off between the latter and the solution of Amir et al.
by designing an Õ(n + kn/

√
m)-time algorithm. Very recently, Chan et al. [39]

shaved off most of the polylogarithmic factors and achieved the running time of
O(n+min(k2n/m, kn

√
logm/

√
m)) at the cost of Monte-Carlo randomization.

Algorithms for the edit distance For the edit distance, a comprehensive survey
of prior work can be found in [115], and here we only discuss the most significant

1Hereafter, Õ(·) hides a factor of poly(logn).

2.1. Modern-day challenges 7

theoretical results. For the general variant of the problem, Sellers introduced the
first algorithm [131]. The algorithm was based on dynamic programming and used
O(nm) time. Masek and Paterson [109] improved the running time of the algorithm
to O(nm/ logn) via the Four Russians technique. In terms of lower bounds, it is
known that there is no solution with strongly subquadratic time complexity unless
the Strong Exponential Time hypothesis [88] is false, even over a binary alphabet [15,
35]. Abboud et al. [5] established a sharper bound under a weaker complexity
assumption: Namely, they showed that even shaving an arbitrarily large polylog
factor would imply that NEXP does not have non-uniform NC1 circuits. Finally,
Clifford et al. [47] showed that, in the cell-probe model with unit word size w = 1,
any randomised algorithm that computes the edit distances between the pattern and
the text online must spend Ω(

√
logn

(log logn)3/2
) expected amortised time per character of

the text.
Similarly to the Hamming distance, one can define the threshold variant of

approximate pattern matching, which we refer to as the k-edit pattern matching .
The first algorithm for this variant of the problem was developed by Landau and
Vishkin [103]; this by-now classical algorithm solves the problem in O(nk) time.
The current best result was achieved by a series of works [128, 53] with the running
time (for certain parameter ranges) O(n+ k4n/m). Very recently, Charalampopou-
los et al. [40, 41] studied the problem for both distances in the grammar-compressed
setting. Their result, in particular, implies an Õ(n + k3.5n/m)-time algorithm for
approximate pattern matching with k edits.

Approximate text indexing In the approximate text indexing problem, the
goal is to preprocess the text into a data structure that supports efficient search for
substrings that are similar to a given pattern. As in the pattern matching setting,
we fix a similarity threshold k. In the text indexing with k mismatches problem, the
objective is to report all substrings of the text whose Hamming distance from the
pattern is at most k. In the text indexing with k edits problem, the goal is to find
all substrings of the text at edit distance at most k from the pattern.

The importance of approximate text indexing is witnessed by the extensive use
of the program BLAST that serves exactly this purpose for biologists (the original
paper on BLAST [11] has been cited 50,000+ times, see also [114]). However,
BLAST does not provide theoretical guarantees, and its success is probably due to
its efficiency in practice and the simplicity of underlying ideas, which has facilitated
its adaptation to a wide range of applications.

The quest for data structures with provable theoretical guarantees for approx-
imate text indexing has led to the development of several efficient solutions. A
particularly remarkable result was established by Cole, Gottlieb, and Lewenstein
in their foundational work [52]. By combining in a very clever way binary search
trees and suffix trees, they proposed a data structure for text indexing with k mis-
matches with space O(n logk n) and query time O(m+ 1

k!(c logn)
k log logn+ occ),

where c > 1 is a constant. In the same work, they also extended their approach to

8 Chapter 2. Introduction

Space Query time

O(n(α logα log n)k) words O(d+ (logα n)
k log log n+ occ) [134]

O(n logk n) words O(d+ 1
k!(c logn)

k log log n+ occ) [52]
O(n logk−1 n) words O(d+ 1

k!(c logn)
k log log n+ occ) [38]

O(n) words

O(d2min{n, |Σ|kdk+1}+ occ) [136]
O(dmin{n, |Σ|kdk+1} logmin{n, |Σ|kdk+1}+ occ) [136]
O(min{n, |Σ|kdk+2}+ occ) [50]
O(min{(|Σ|d)k log n+ occ) [87]
O(d+ (c logn)k(k+1) log logn+ occ) [38]
O(|Σ|kdk−1 log n log logn+ occ) [37]

O(n
√
logn) bits O((|Σ|d)k log log n+ occ) [101]

O(n) bits
O((|Σ|d)k log2 n+ occ log log n) [87]
O(((|Σ|d)k log logn+ occ) logδ n) [101]
O((d+ (c logn)k

2+2k log logn+ occ) logδ n) [38]

Figure 2.2: Upper bounds for text indexing with k mismatches. Here α is any
integer in [2, n/2], c > 1, δ > 0 are constants, and occ is the total number of the
substrings that we output. For text indexing with k edits, the term occ is replaced
with 3kocc.

handle edit distance. Subsequent work has mainly focused on improving the space
requirements [37, 38, 87, 101]. An exception is the work of Tsur [134], who pre-
sented an index with improved query time at the expense of increased space usage.
A summary of these results is provided in Figure 2.2.

2.2 Contributions of the author

The principal area of the author’s research is algorithms and data structures for
efficient processing of strings and, more generally, formal languages. Her main
research interests include small-space algorithms and data structures, streaming
algorithms, property testing, and lower bounds. Her interest in the main topics of
this proposal, namely, approximate and randomised string processing, text indexing,
and applications in formal languages has gradually developed since completing her
Ph.D. in 2013. This thesis overviews five papers representing her contribution on
these topics. The rest of this section gives a background behind these papers. The
papers co-signed by the author are highlighted in blue.

2.2.1 Streaming pattern matching

This section surveys the literature on approximate pattern matching in the stream-
ing model, highlighting the author’s contributions. Throughout this section, we
assume a pattern P of length m and a text T of length n are given. We focus on

2.2. Contributions of the author 9

the threshold version of approximate pattern matching.

Definition 1 A substring of the text is called a k-mismatch (respectively, k-edit)
occurrence of P if it is at Hamming (respectively, edit) distance at most k from P .

In the streaming setting, the pattern arrives first. After preprocessing, the algo-
rithm receives the text one character at a time, and reports whenever a suffix of the
current prefix of the text forms a k-mismatch (or k-edit) occurrence of the pattern.
The resources considered in this setting are the maximum space used by the algo-
rithm after the arrival of the first character of the text, and the time required to
process each character, either in the worst-case or amortised sense. The complexity
of preprocessing the pattern is not included in the complexity bounds.

All algorithms discussed in this section are randomized and correct with high
probability, i.e., with probability at least 1− 1/nc for some constant c > 1. We use
Õ(·) notation to suppress factors that are polylogarithmic in n.

2.2.1.1 The k-mismatch pattern matching We now present a survey of the
literature on streaming algorithms for k-mismatch pattern matching. The results
for this problem are summarised in Table 2.1. The currently most space-efficient
algorithm, due to Clifford, Kociumaka, and Porat, SODA’19 [48] is the result of a
long line of improvements and its space complexity, up to polylogarithmic factors,
matches the known lower bound of Ω(k) bits, as established in [86].

Algorithm Space Time (total)

Porat and Porat [120] Õ(k3) Õ(k2n)

Clifford et al. [46] Õ(k2) Õ(
√
kn)

Radoszewski and Starikovskaya [122, 123]† Õ(k2) Õ(kn)

Golan et al. [82] Õ(k) Õ(kn)

Clifford et al. [48]† Õ(k) Õ(
√
kn)

Golan et al. [81] s

for k ≤ s ≤ m
Õ(n+min{nk2

m , nk√
s
, σnm

s })

Table 2.1: Streaming algorithms for approximate pattern matching under the Ham-
ming distance. Algorithms, marked with †, provide an error correcting feature,
which allows not only to report k-mismatch occurrences, but also the mismatches
between them and the pattern. The algorithm of Clifford et al. [48] only does so at
request in Õ(k) extra time per occurrence.

We now provide more detail about each of the algorithms in Table 2.1.

Porat and Porat, FOCS’09 [120] The study of streaming complexity of k-
mismatch pattern matching was initiated by Porat and Porat [120]. Their algorithm
runs in Õ(k3) space and Õ(k2) time per arriving symbol. This complexity was
achieved through an elegant reduction to exact pattern matching via the Chinese

10 Chapter 2. Introduction

remainder theorem. Namely, they showed that it suffices to partition the pattern and
the text into Õ(k) subpatterns and subtexts, and to count the number of subpattern-
subtext pairs that do not match.

Clifford et al., SODA’16 [46] In this work, we presented an improved streaming
algorithm for pattern matching under the Hamming distance that uses Õ(k2) space
and Õ(

√
k) time per character of the text. The first step toward achieving better

complexity is to distinguish between patterns with big approximate period and small
approximate period. An approximate period is an integer ρ such that the Hamming
distance between the pattern and its copy shifted by ρ is at most k. Intuitively,
small approximate period implies repetition in the pattern and in the region of the
text containing its k-mismatch occurrences, which allows one to encode both the
pattern and the region of the text in small space and process them efficiently. On
the other hand, if the approximate period is large, then the k-mismatch occurrences
of the pattern are spaced apart. By applying a randomized reduction to streaming
exact pattern matching similar to that of [120], we obtained an efficient streaming
(1 + ε)-approximate pattern matching algorithm. By efficient, we mean that it
uses less space and less time than a streaming algorithm computing the Hamming
distances exactly. This algorithm is used as a filtering step. Candidate k-mismatch
occurrences are then verified using a slower algorithm (since the candidates are
spaced apart). Further details of this result are presented in Chapter 4.

Radoszewski and Starikovskaya, DCC’17 [122] (see also [123] In this work,
we augmented the classical definition of k-mismatch pattern matching with what
we called the error correcting feature. In short, the error correcting feature allows
not only to find k-mismatch occurrences of the pattern in the text, but also the
mismatches between these occurrences and the pattern. This feature proved to be
a powerful tool. We demonstrated this by using it to develop small-space streaming
algorithms for the problem of pattern matching on weighted strings. A weighted
string is a sequence of probability distributions on the alphabet and is a commonly
used representation of uncertain sequences in molecular biology. In particular, they
are commonly used to model motifs and are integral to many software tools for
computational motif discovery; see e.g. [129, 138]. In the weighted pattern matching
problem, we are given a text and a pattern, both of which are weighted strings, and
must find all alignments of the text and of the pattern where there exists a regular
string that matches both the text and the pattern with probability larger than
a given threshold. As weighted pattern matching is not a primary focus of this
thesis, we do not elaborate further. An interested reader can refer to [122, 123]. To
implement this feature, we first developed a solution for the case k = 1. The main
idea is that the indices of the subpatterns that do not match can give the position of
the mismatch by the Chinese remainder theorem. For k > 1, the solution is similar,
but subdivides the pattern into more subpatterns and the text into more subtexts.
The complexity of the algorithm is similar to that of [46].

2.2. Contributions of the author 11

Golan, Kopelowitz, Porat, ICALP’18 [82] In the multiple-patterns, multiple-
texts problem one is given a set of patterns and a set of streaming texts, and must
detect substrings of the texts that match the patterns. A straightforward solution is
to run multiple instances of the streaming exact pattern matching algorithm. How-
ever, Golan, Kopelowitz, and Porat [82] demonstrated that by sharing space across
streams, an improved solution is achievable. As a corollary, leveraging the reduc-
tion by Clifford et al. [46], they obtained an Õ(k)-space and Õ(k)-time streaming
algorithm for k-mismatch.

Clifford, Kociumaka, Porat, SODA’19 [48] The current state-of-the-art algo-
rithm was presented by Clifford, Kociumaka, Porat, SODA’19 [48]. It uses O(k log n

k)

space and Õ(
√
k) time per character of the text. Moreover, similarly to the algo-

rithm of Radoszweski and Starikovskaya [122], it incorporates the error correction
feature. The most noteworthy aspect of their work, however, lies in the techniques
employed to achieve this result. Instead of using the randomised reduction of [46],
they turned back to the idea of the original streaming exact matching algorithms.
Namely, they consider prefixes of the pattern of exponentially increasing lengths.
If the current text ends with a k-mismatch occurrence of a prefix of the pattern
of length 2i, then 2i−1 characters before the algorithm must have detected a k-
mismatch occurrence of a prefix of the pattern of length 2i−1. This observation
enables the algorithm to use k-mismatch occurrences for the level-(i − 1) prefix of
length 2i−1 to incur k-mismatch occurrences for the level-i prefix of length 2i. Two
main challenges arise: first, demonstrating that occurrences at level i can be stored
efficiently, despite the complexity introduced by mismatches. Second, an efficient
method is required to verify whether a k-mismatch occurrence of the level-(i − 1)

prefix can be extended to a k-mismatch occurrence of the level-i prefix. To address
this, the authors introduce a novel k-mismatch sketch, akin to the Karp–Rabin fin-
gerprint [94]. Their construction is based on the ideas behind Reed–Solomon error
correcting codes [124] and yields a sketch that requires only Õ(k) space. Moreover,
like the Karp–Rabin fingerprint, it enjoys several desirable algorithmic properties,
including efficient maintenance under concatenation and prefix removal. Combining
these approaches allowed them to obtain the final result. Notably, the algorithm’s
space complexity is close to optimal, while its time complexity matches that of the
offline algorithm [12].

Golan et al., CPM’20 [81] However, in the offline setting, more time-efficient
algorithms exist; for instance, the algorithm of Chan et al. [39] runs in O(n +

min(k2n/m, kn
√
logm/

√
m)) time. Golan et al. [81] posed the question of whether

a streaming algorithm with a time-space trade-off exists for k-mismatch pattern
matching. They provided a positive answer by presenting an algorithm that, given
an integer parameter k ≤ s ≤ m, uses s space and Õ(n + min{nk2

m , nk√
s
, σnms }) to-

tal time, where σ is the size of the alphabet. The algorithm distinguishes between
patterns with small and large approximate periods. For patterns with a small ap-

12 Chapter 2. Introduction

proximate period, it relies on the techniques of Clifford et al. [46]; and for patterns
with a large approximate period, it uses the fact that the occurrences are spaced
apart.

Gawrychowski and Starikovskaya [77] To conclude this section, we highlight
one additional result that somewhat stands apart from the others. In [77], we
studied the question of multiple pattern matching under the Hamming distance.
In this problem, we are given a set of d patterns with total length m, and must
report every position i in the text that corresponds to the endpoint of a k-mismatch
occurrence of at least one of these patterns. A straightforward approach runs d

independent copies of the algorithm [48], resulting in Õ(dk) space and Õ(dk) time
per character. We demonstrated that by using slightly larger space Õ(dk logk d),
the problem can be solved in Õ(k logk d) time per character, which is better than
Õ(dk) for small k. Our approach builds upon a modification of the text index of
Cole, Gottlieb, and Lewenstein [52] (see Section 2.1.2). We developed a randomized
implementation of this text index. It uses Õ(kd logk d) space and, assuming access
to Hamming distance sketches of the prefixes of a query string, can answer queries
in Õ(k logk d) time. The modified text index is used both for short patterns and for
detecting k-mismatch occurrences of aperiodic suffixes of long patterns.

2.2.1.2 The k-edit pattern matching For the edit distance, no sublinear-space
streaming algorithm was known prior to 2017. The primary challenge in developing
such algorithms has been (and continues to be) the lack of sketches that can be
efficiently updated under concatenation of two strings, analogous to Karp–Rabin
fingerprints for exact pattern matching or the Hamming distance sketches [48]. Ta-
ble 2.2 summarizes existing algorithms.

Algorithm Space Time (total)

Starikovskaya, CPM’17 [132] O(k8
√
m log6 m) Õ(n(k2

√
m+ k13))

Kociumaka, Porat, and Starikovskaya, FOCS’21 [98] Õ(k5) Õ(n · k8)
Bhattacharya and Koucky [23] Õ(k2) Õ(n · k2)

Table 2.2: Streaming algorithms for approximate pattern matching under the edit
distance.

Starikovskaya, CPM’17 [132] In CPM’17, we presented the first sublinear-
space algorithm for k-edit pattern matching. The algorithm uses O(k8

√
m log6m)

space and O((k2
√
m+ k13) · log4m) worst-case time per character of the text. This

complexity was achieved thanks to the (non-concatenable) edit distance sketches of
Belazzougui and Zhang, FOCS 2016 [20]. They demonstrated the existence of a
sketch mapping strings of length at most n to strings of length Õ(k8) that can be
efficiently computed in streaming and such that given the sketches of two strings

2.2. Contributions of the author 13

one can compute the edit distance between them if it does not exceed k. The main
idea of the algorithm [132] is straightforward: it divides the text into blocks of size
Θ(

√
m), and begins computing the sketch at each block boundary. Simultaneously,

the algorithm stores the sketches of the Θ(
√
m) longest suffixes of the pattern.

Notably, for any alignment of the pattern and the text, the starting position of at
least one of the suffixes is aligned with a block border, which allows computing the
edit distance between the suffix of the pattern and the text. The remaining task is
to compute the edit distance between the prefix and the text. For that, we show
an efficient encoding of the blocks of the text, which uses a read-only access to the
prefix of the text of length Θ(

√
m).

Kociumaka, Porat, and Starikovskaya, FOCS’21 [98] In this work, we signif-
icantly improved the streaming complexity of k-edit pattern matching by presenting
a randomized algorithm that uses Õ(k5) space and Õ(k8) amortized time per char-
acter of the text. Similarly to the algorithm of [48], our solution considers prefixes
of the pattern of exponentially increasing lengths. Furthermore, it distinguishes be-
tween non-periodic and periodic prefixes (where periodicity is defined with respect
to the edit distance). By [40], the number of k-edit occurrences of non-periodic
prefixes is bounded by Õ(poly(k)). This means that one can store the edit distance
sketch of the suffix of the text starting at each of these occurrences, allowing efficient
verification of whether it can be extended to a k-edit occurrence of the next-level
prefix. In contrast, the number of k-edit occurrences of periodic prefixes can be
large, making it infeasible to compute a sketch for each. However, by [40] such
occurrences must lie within a periodic region of the text. This allows us to store
the sketch for only the last occurrence and then efficiently reconstruct the sketches
for earlier occurrences in the region using the known period. We provide more
details on this result in Chapter 5.

Bhattacharya and Koucky [22] The current best algorithm was presented
in [22]. It uses Õ(k2) space and Õ(k2) time per character of the text. The core of
their approach is a grammar-based decomposition technique [22], which partitions a
string into a small number of blocks, each encoded by a small grammar. This tech-
nique enabled a reduction from k-edit pattern matching to Õ(k2)-mismatch pattern
matching.

2.2.2 Lower bounds for approximate text indexing

Despite significant progress in approximate text indexing, no text index (not even
our randomised implementation [77]) has surpassed the time-space barrier suggested
by Navarro in 2010: For k being the maximum allowed number of mismatches or
differences, either the index size or the query time must depend on k exponentially.

In Cohen-Addad, Feuilloley, Starikovskaya, SODA’19 [51], we partially confirmed
Navarro’s conjecture by giving lower bounds, showing that indeed getting over this
barrier is beyond the current techniques. We focused on two models of computation:

14 Chapter 2. Introduction

the classical RAM model and the pointer machine model. In the RAM model, we
established conditional lower bounds based on the now-standard Strong Exponential
Time Hypothesis (SETH), and in the pointer machine model, we provided uncondi-
tional lower bounds. The pointer machine model is more restricted than the RAM
model, but it is particularly relevant for approximate text indexing, as all known
solutions are pointer-machine data structures.

Approximate text indexing is closely related to approximate dictionary look-up,
where one is given a dictionary of patterns of length n, and given a query string
must decide whether there is a pattern at Hamming (edit) distance at most k from
any pattern.

The earliest lower bounds for this problem were shown in [17, 28]. They showed
that for some constant c > 0, m ∈ w(log n ∩ no(1)), and k = m/2 − c

√
m logn,

any randomised two-sided error cell-probe algorithm for dictionary look-ups with
k mismatches that is restricted to use poly(n,m) cells of size poly(log n,m) each,
must probe at least Ω(m/ log n) cells. Since the cell-probe model is stronger than
the RAM model, this lower bound implies Ω(m/ logn) query time lower bound for
the classic RAM data structures. We note, however, that the lower bound is not
that high while the value of k is rather large, k = w(log n ∩ no(1)).

Rubinstein [125] established a lower bound for approximate dictionary look-up
under the Hamming distance by reduction from bichromatic closest pair under the
Hamming distance. In this problem, one is given two sets of n binary strings, blue
and red, and must find one blue string and one red string with the smallest Hamming
distance between them. It is known [10, 125] that solving this problem requires
Ω(n2−δ) time, for any constant δ > 0, conditional on the Strongly Exponential
Time Hypothesis (SETH).

Conjecture 2.1 (SETH [88]) For any δ > 0, there exists m = m(δ) such that
SAT on m-CNF formulas with n variables cannot be solved in time O(2(1−δ)n).

In [51], we extend the lower bound to approximate text indexing under the
Hamming distance. Next, we introduce a transform that, applied to strings of
length n with Hamming distance k between them, constructs two strings of length
O(n log n) with edit distance k between them. We refer to this transform as the
stoppers transform. The stoppers transform allowed us extending the lower bounds
to the edit distance as well. (See Figure 2.3 for a summary.)

In the second part of the paper, we establish lower bounds in the pointer machine
model. We begin by proving a lower bound for approximate dictionary look-up under
the Hamming distance.

To this end, we use the framework introduced by Afshani [7], initially intro-
duced to show lower bounds for simplex range reporting and related problems. This
framework was later used by Afshani and Nielsen [8] to show a lower bound for
dictionary look-up with k don’t cares. In this problem, the query strings may con-
tain up to k don’t care symbols, that is, special symbols that match any character
of the alphabet, and the task is to retrieve all dictionary strings that match the

2.2. Contributions of the author 15

Bichrom. closest pair
(Ham.)

Ω(n2−δ) time ([10, 125])

Bichrom. closest pair
(edit)

Ω(n2−δ) time
([125], [51])

Dictionary look-up
(Ham.)

Ω(n1−δ) query time ([125])

Dictionary look-up
(edit)

Ω(n1−δ) query time
([125], [51])

Approximate
text indexing

(Ham.)
Ω(n1−δ) query time

([51])
Approximate
text indexing

(edit)
Ω(n1−δ) query time

Stoppers transform, [125]

Figure 2.3: Summary of lower bounds conditional on SETH [51]. These bounds hold
for all data structures that can be constructed in polynomial time.

query string. Essentially, it is a parameterized variant of the partial match problem
(see [121] and references therein). The structure of this problem is very similar to
that of dictionary look-up with mismatches, as each don’t care symbol in the query
string gives |Σ| possibilities for the corresponding symbol in the dictionary strings.
On the other hand, it is simpler, as the positions of the don’t care symbols are fixed.
We extend their framework to the problem of dictionary look-up with mismatches,
and then apply the stoppers transform to show lower bounds for the edit distance
as well.

Finally, we show a reduction from dictionary look-up to text indexing which
gives us lower bounds for text indexing. The main idea of the reduction is quite
simple: We define the text as the concatenation of the dictionary strings interleaved
with a special gadget string. The gadget string must guarantee that if we align
the pattern with a substring that is not in the dictionary, the Hamming distance
will be much larger than k. Via this reduction, the lower bounds for approximate
dictionary look-up under the Hamming distance imply that for some value of k,
there is no data structure for text indexing with k mismatches with sublinear query
time unless SETH is false. This lower bound holds even if approximation is allowed.
Similar bounds hold in the pointer machine model, see Figure 2.4 for an overview.

We give more details of this contribution in Chapter 6.

2.2.3 Formal languages membership

A formal language is, essentially, a set of strings. Pattern matching can be stated
as a problem of recognition of a formal language, where the language is a single-
ton containing only the pattern. We have already seen that even this problem
is non-trivial in streaming. An independent line of research has examined the
problem of the recognition of classes of formal languages in streaming, such as
regular and context-free languages, often yielding coarse-grained or even negative
results [108, 70, 71, 68, 69, 74, 14, 66, 73, 19, 72]. In this section, we focus on
applications of streaming (approximate) pattern matching. We consider languages

16 Chapter 2. Introduction

Text indexing (Ham.)
O(m+ (logn2k)k + occ) query time

=⇒ Ω(ckn) space

Dictionary look-up (Ham.)
O(m+ (lognk)k + occ) query time

=⇒ Ω(ckn) space

Dictionary look-up (edit)
O(m/ logm+ (logn2k)k + occ) query time

=⇒ Ω(ckn) space

Stoppers transform

Figure 2.4: Summary of pointer-machine lower bounds [51]. Here m is the length
of the query string (pattern) and c > 1 is some constant. The bounds hold for all
even k such that 8√

3

√
log n ≤ k = o(log n).

traditionally studied in string processing: regular languages, the language of palin-
dromes, which is context-free but not regular, and the language of squares, which is
not context-free. Although these languages belong to different levels of the Chom-
sky hierarchy [118, 43], these languages have a common feature: for any of them,
one can fix a set of patterns such that any string in the language can be represented
as a concatenation of the patterns. In this sense, these languages are particularly
amenable to recognition via streaming pattern matching.

2.2.3.1 Regular languages membership The fundamental notion of regular
expressions was introduced back in the 1951 by Kleene [96]. Regular expression
search is one of the key primitives in diverse areas of large scale data analysis:
computer networks [100], databases and data mining [75, 106, 112], human-computer
interaction [95], internet traffic analysis [91, 139], protein search [116], and many
others. As such, this primitive is often the main computational bottleneck in these
areas and in the pursuit for efficiency has been implemented in many programming
languages: Perl, Python, JavaScript, Ruby, AWK, Tcl and Google RE2, to name
just a few.

A regular expression R is a sequence containing characters of a specified al-
phabet Σ and three special symbols (operators): concatenation (·), union (|), and
Kleene star (∗), and it describes a set of strings L(R) on Σ. For example, a regular
expression R = (a|b)∗c specifies a set of strings L(R) on the alphabet Σ = {a, b, c}
such that their last character equals c, and all other characters are equal to a or
b. There exist two classical formalisations of regular expressions search, regular ex-
pression membership and pattern matching. In the regular expression membership
problem, we are given a string T of length n, and must decide whether T ∈ L(R) for
a given regular expression R. In the regular expression pattern matching problem,
we must find all positions 1 ≤ r ≤ n such that for some 1 ≤ ℓ ≤ r, the substring
T [ℓ . . r] ∈ L(R).

Assume that T is read-only, and let m be the length of the regular expression.
The classical algorithm by Thompson [133] allows to solve both problems in O(nm)

2.2. Contributions of the author 17

time and O(m) space by constructing a non-deterministic finite automaton accept-
ing L(R). Galil [67] noted that while the space bound of Thompson’s algorithm is
optimal in the deterministic setting, the time bound could probably be improved.
Since then, the effort has been mainly focused on improving the time complexity
of regular expression search. The first breakthrough was achieved by Myers [113],
who showed that both problems can be solved in O(mn/ log n+(n+m) log n) time
and O(mn/ logn) space. Bille and Farach-Colton [25] reduced the space complex-
ity down to O(nε + m), for an arbitrary constant ε > 0. This result was further
improved by Bille and Thorup [26] who showed an algorithm with running time
O(nm(log log n)/ log3/2 n + n + m) time that uses O(nε + m) space. The idea of
the algorithms by Myers [113], Bille and Farach-Colton [25], and Bille and Tho-
rup [26] is to decompose Thompson’s automaton into small non-deterministic fi-
nite automata and tabulate information to speed up simulating the behaviour of
the original automaton when reading T . A slightly different approach was taken
by Bille [24] who showed that the small non-deterministic finite automata can be
simulated directly using the parallelism built-in in the RAM model. For w being
the size of the machine word, Bille showed O(m)-space algorithms with running
times O(nm logw

w + m logw) for m > w, O(n logm + m logm) for
√
w < m ≤ w,

and O(min{n+m2, n logm+m logm}) for m ≤
√
w. Finally, Bille and Thorup [27]

identified a new parameter affecting the complexity of regular expression search,
which is particularly relevant to this paper. Namely, they noticed that in practice
a regular expression contains d ≪ m occurrences of the union symbol and Kleene
stars, and showed that regular expression membership and pattern matching can be
solved in O(m) space and O(n · (d logww + log d)) time.

It is easy to see, however, that in the general case the time complexity of all the
algorithms above remains close to “rectangular”, with some polylogarithmic factors
shaved. Recently, fine-grained complexity provided an explanation for this. Back-
urs and Indyk [16] followed by Bringmann, Grønlund, and Larsen [34] considered a
subclass of regular expressions which they refer to as “homogeneous”. Intuitively, a
regular expression is homogeneous, if the operators at the same level of the expres-
sion are equal. Assume that the alphabet Σ = {1, 2, . . . , σ}. To give a few exam-
ples, the following regular expressions are homogeneous: R1 = (P1|P2| . . . |Pd), R2 =

P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd, and R3 = (P1|P2| . . . |Pd)
∗, where Pi,

1 ≤ i ≤ d, are strings on Σ, i.e. concatenations of characters in Σ. [16, 34] con-
sidered both the membership and the pattern matching problems. A careful reader
might notice that in the pattern matching setting the expression R1 corresponds
to the classical dictionary matching problem [9] and R2 to pattern matching with
wildcards (don’t cares) [65, 92, 54, 89, 44]. In the membership setting, R3 corre-
sponds to the word break problem [135, 104]. As such, a seemingly simple class of
homogeneous regular expressions covers many classical problems in stringology. The
authors of [16, 34] provided a complete dichotomy of the time complexities for ho-
mogeneous regular expressions in both settings. Namely, they showed that in both
settings, every regular expression either allows a solution in near-linear time, or re-
quires Ω((nm)1−α) time, conditioned on SETH. The only exception is the word break

18 Chapter 2. Introduction

problem in the membership setting, for which [34] showed an O(n(m logm)1/3+m)-
time algorithm and a matching combinatorial lower bound (up to polylogarithmic
factors). Later, Abboud and Bringmann [4] took an even more fine-grained approach
and showed that in general, regular expression pattern matching and membership
cannot be solved in time O(nm/ log7+α n) for any constant α > 0 under the Formula-
SAT Hypothesis. Schepper [130] extended their result by revisiting the dichotomy
for homogeneous regular expressions, and showed an O(nm/2Ω(

√
logmin{n,m}) time

bound for some regular expressions, and for the remaining ones an improved lower
bound of Ω(nm/polylog n).

In [59], we study the streaming complexity of regular expression membership
and pattern matching, motivated by multiple practical applications. For a general
regular expression membership and pattern matching, it is not hard to see that Ω(m)

bits of space are required by a reduction from the set intersection problem. However,
there are at least two interesting special cases of regular expression pattern matching
that admit better streaming algorithms. In the dictionary matching, we are given a
dictionary of d strings of length at most m over an alphabet Σ and for each position
r in T must decide whether there is a position ℓ ≤ r such that T [ℓ . . r] matches a
dictionary string. A series of work [120, 31, 45, 84, 82] showed that this problem
can be solved by a streaming algorithm in O(d logm) space and O(log log |Σ|) time
per character of the text. In the d-wildcard pattern matching the expression is R =

P1(1|2| . . . |σ)P2(1|2| . . . |σ) . . . (1|2| . . . |σ)Pd+1, where Pi, 1 ≤ i ≤ d + 1 are strings
of total length at most m over an alphabet Σ = {1, 2, . . . , σ}. Golan, Kopelowitz,
and Porat [83] showed that this problem can be solved by a streaming algorithm
in O(d logm) space and O(d+ logm) time per character. Note further that the d-
wildcard pattern matching problem is a special case of the k-mismatch problem, and
hence can be solved by an application of the algorithm of Clifford, Kociumaka and
Porat [48] in O(d log m

d) space and O(log m
d (

√
d log d+ log3m)) time per character.

As mentioned earlier, Bille and Thorup [27] observed that in practice the num-
ber d of occurrences of the union symbol and Kleene stars is significantly smaller
than the size m of the expression R. Furthermore, both the dictionary matching
and the wildcard pattern matching can be casted as instances of the regular ex-
pression pattern matching, and streaming algorithms with space complexity of the
form poly(d, log n) are known. In [59], we showed that this is also the case for the
general regular expression membership and pattern matching. More specifically, we
design streaming algorithms that solve both problems using O(d3polylog n) space
and O(nd5polylog n) time per character of the text.

On a very high level, our approach is based on storing carefully chosen subsets
of occurrences of the strings appearing in R. Similar to streaming pattern matching
algorithms, our approach is to treat periodic and aperiodic strings separately. The
technical novelty of our algorithms is that we apply this reasoning on O(log n) levels,
thus obtaining a hierarchical decomposition of a periodic string. Next, because
not all occurrences are stored we need to recover the omitted information. Very
informally, we need to decide whether a substring of T sandwiched between two

2.2. Contributions of the author 19

occurrences of strings A1, A2 is a label of some run from A1 to A2 in the compact
Thompson automaton for R, where the period of the substring is equal to the period
of some prefix of length 2k of one of the strings. The difficulty is that, while the
substring has a simple structure, it could be very long, and it is not clear how to
implement this computation in a space-efficient manner. We overcome this difficulty
by recasting the problem in the language of evaluating a circuit with addition and
convolution gates, following and improving on the technique initially introduced
in [107, 33] for the subset sum problem.

We provide more details in Chapter 7.

2.2.3.2 Palindromes and squares In [18], we study two classical formal lan-
guages, the language of palindromes and the language of squares. The language of
palindromes contains all strings that are equal to their reversed copies (in particular,
even-length palindromes can be represented as the concatenation of a string and its
reversed copy). The language of squares contains all strings that are the concatena-
tion of two copies of a string. These two languages are very similar yet very different
in nature: the language of palindromes is not regular but is context-free, whereas
the language of squares is not even context-free.

While these languages are not regular, deciding whether a sting belongs to one
of them is easy, even in streaming: for the languages of palindromes, it is enough
to compute the Karp–Rabin fingerprint of the input and its reverse, and for squares
the Karp–Rabin fingerprint of the first half of the input and of the input. Both
problems can therefore be solved in streaming in O(1) space and O(1) time per
character of the input.

In [18], we studied the complexity of a strictly harder language distance problem,
focusing on the online and low-distance regime. In this regime, we are given a string
T of length n, and the task is to compute the minimum distance from every prefix
of T to a formal language if it does not exceed a given threshold k. [13] showed that
there is a streaming algorithm that solves the problem in Õ(k) space and Õ(k2) time
per input character. We continue their line of research and give streaming algorithms
using poly(k, log n) time per character and poly(k, logn) space for language distance
membership for palindromes and squares under the Hamming and the edit distances.

As a corollary, we obtain new streaming algorithms for (1 + ε)-approximation
of the maximal length of a substring of the input string that is within Hamming
(edit) distance at most k to a palindrome. The previous best algorithm for this
problem under the Hamming distance is by [85], who extended the works [21, 76] and
showed a solution that uses O(k log9 n

ε log(1+ε)) time per character and O(k log7 n
ε log(1+ε)) space.

We significantly improve their result and give an algorithm that uses O((k/ε) log4 n)

time per character and O((k/ε) log2 n) bits of space. We also give the first streaming
algorithm for a similar problem under the edit distance which uses Õ(k2/ε) time
per character and space.

We provide further details in Chapter 8.

20 Chapter 2. Introduction

2.3 Organisation of the thesis

The remainder of the thesis is comprised of preliminaries, where we give basic defi-
nitions and notation, and of five chapters, each dedicated to an article co-signed by
the author. The names of PhD students co-advised by the applicant are highlighted.

• Chapter 4: R. Clifford, A. Fontaine, E. Porat, B. Sach, T. Starikovskaya, The
k-mismatch problem revisited. Proceedings of the 2016 ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2016), pages 2039–2052 [46].

• Chapter 5: T. Kociumaka, E. Porat, T. Starikovskaya, Small-space and stream-
ing pattern matching with k edits. Proceedings of the 62nd IEEE Annual
Symposium on Foundations of Computer Science (FOCS 2021), pages 885–
896 [98].

• Chapter 6: V. Cohen-Addad, L. Feuilloley, T. Starikovskaya, Lower bounds
for text indexing with mismatches and differences. Proceedings of the 2019
ACM-SIAM Symposium on Discrete Algorithms (SODA 2019), pages 1146–
1164 [51].

• Chapter 7: B. Dudek, P. Gawrychowski, G. Gourdel, T. Starikovskaya, Stream-
ing Regular Expression Membership and Pattern Matching. Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms (SODA 2022), pages
670–694 [59].

• Chapter 8: G. Bathie, T. Kociumaka, T. Starikovskaya, Small-Space Algo-
rithms for the Online Language Distance Problem for Palindromes and Squares.
Proceedings of the 34th International Symposium on Algorithms and Compu-
tation (ISAAC 2023). LIPIcs, vol. 283, pages 10:1–10:17 [18].

3 Preliminaries

“A word after a word after a word is power.”
Margaret Atwood, Spelling.

In this section, we introduce basic notation and definitions necessary for the
subsequent chapters.

We assume an integer alphabet Σ = {1, 2, . . . , σ} with σ characters . A string
(or a word) Y is a sequence of characters numbered from 1 to n = |Y |. By Y [i]

we denote the i-th symbol of Y . For a string Y of length n, we denote its reverse
Y [n]Y [n− 1] . . . Y [1] by revY . We define Y [i . . j] to be equal to Y [i] . . . Y [j] which
we call a fragment of Y if i ≤ j and to the empty string ε otherwise. We also
use notations Y [i . . j) and Y (i . . j] which naturally stand for Y [i] . . . Y [j − 1] and
Y [i+1] . . . Y [j], respectively. We call a fragment Y [1] . . . Y [j] a prefix of Y and use
a simplified notation Y [. . i], and a fragment Y [i] . . . Y [n] a suffix of Y denoted by
Y [i . .]. We say that X is a substring of Y if X = Y [i . . j] for some 1 ≤ i ≤ j ≤ |Y |.
The fragment Y [i . . j] is called an occurrence of X.

For a string Y , we define Y m to be the concatenation of m copies of Y . We
call Y m a power of Y . We also define Y ∞ to be an infinite string obtained by
concatenating infinitely many of copies of Y . We say that a string X of length x is
a period of a string T if X = T [1 . . x] and T [i] = T [i+ x] for all i = 1, . . . , |T | − x.
By per(T) we denote the length of the shortest period of T . The string T is called
periodic if 2 per(T) ≤ |T |. For a string Y ∈ Σn, we define a forward rotation
rot(Y) = Y [2] · · ·Y [n]Y [1]. In general, a cyclic rotation rots(Y) with shift s ∈ Z is
obtained by iterating rot or the inverse operation rot−1. A non-empty string X ∈ Σn

is primitive if it is distinct from its non-trivial rotations, i.e., if X = rots(X) holds
only when s is a multiple of n.

We say that a fragment X[i . . i+ℓ) is a previous factor if X[i . . i+ℓ) = X[i′ . . i′+

ℓ) holds for some i′ ∈ [1 . . i). The LZ77 factorization of X is a factorization X =

F1 · · ·Fz into non-empty phrases such tht the jth phrase Fj is the longest previous
factor starting at position 1 + |F1 · · ·Fj−1|; if no previous factor starts there, then
Fj consists of a single character. In the underlying LZ77 representation, every
phrase Fj = T [j . . j + ℓ) that is a previous fragment is encoded as (i′, ℓ), where
i′ ∈ [1 . . i) satisfies X[i . . i+ ℓ) = X[i′ . . i′ + ℓ). The remaining length-1 phrases are
represented by the underlying character. We use LZ(X) to denote the underlying
LZ77 representation and |LZ(X)| to denote its size (the number of phrases).

22 Chapter 3. Preliminaries

3.1 Distances

The Hamming distance between two strings S, T (denoted hd(S, T)) is defined to be
equal to infinity if S and T have different lengths, and otherwise to the number of
positions where the two strings differ (mismatches).

The edit distance ed(X,Y) between two strings X and Y is defined as the small-
est number of character insertions, deletions, and substitutions required to transform
X to Y .

Definition 2 A sequence (xt, yt)
m
t=1 is an alignment of X,Y ∈ Σ∗ if (x1, y1) =

(1, 1), (xm, ym) = (|X| + 1, |Y | + 1), and (xt+1, yt+1) ∈ {(xt + 1, yt + 1), (xt +

1, yt), (xt, yt + 1)} for t ∈ [1 . .m).

Given an alignment A = (xt, yt)
m
t=1 of strings X,Y ∈ Σ∗, for every t ∈ [1 . .m):

• If (xt+1, yt+1) = (xt + 1, yt), we say that A deletes X[xt],

• If (xt+1, yt+1) = (xt, yt + 1), we say that A deletes Y [yt],

• If (xt+1, yt+1) = (xt+1, yt+1), we say that A aligns X[xt] and Y [yt], denoted
X[xt] ∼A Y [yt]. If additionally X[xt] = Y [yt], we say that A matches X[xt]

and Y [yt], denoted X[xt] ≃A Y [yt]. Otherwise, we say that A substitutes
X[xt] for Y [yt].

The cost of an edit distance alignment A is the total number characters that A
deletes or substitutes. We denote the cost by costX,Y (A), omitting the subscript if
X,Y are clear from context. The cost of an alignment A = (xt, yt)

m
t=1 is at least

its width width(A) = maxmt=1 |xt − yt|. Observe that ed(X,Y) can be defined as the
minimum cost of an alignment of X and Y . An alignment of X and Y is optimal if
its cost is equal to ed(X,Y).

Given an alignment A = (xt, yt)
m
t=1 of X,Y ∈ Σ+, we partition the elements

(xt, yt) of A into matches (for which X[xt] ≃A Y [yt]) and breakpoints (the remain-
ing elements). We denote the set of matches and breakpoints by MX,Y (A) and
BX,Y (A), respectively, omitting the subscripts if the strings X,Y are clear from
context. Observe that |BX,Y (A)| = 1 + cost(A).

We call M ⊆ [1 . . |X|]×[1 . . |Y |] a non-crossing matching of X,Y ∈ Σ∗ if X[x] =

Y [y] holds for all (x, y) ∈ M and there are no distinct pairs (x, y), (x′, y′) ∈ M with
x ≤ x′ and y ≥ y′. Note that, for every alignment A of X,Y , the set M(A) is a
non-crossing matching of X,Y .

Given an alignment A = (xt, yt)
m
t=1 of X and Y , for every ℓ, r ∈ [1 . .m] with

ℓ ≤ r, we say that A aligns X[xℓ . . xr) and Y [yℓ . . yr), denoted X[xℓ . . xr) ∼A
Y [yℓ . . yr). If there is no breakpoint (xt, yt) with t ∈ [ℓ . . r), we further say that A
matches X[xℓ . . xr) and Y [yℓ . . yr), denoted X[xℓ . . xr) ≃A Y [yℓ . . yr).

An alignment A = (xt, yt)
m
t=1 of X,Y ∈ Σ∗ naturally induces a unique alignment

of any two fragments X[x . . x′) and Y [y . . y′). Formally, the induced alignment
A[x. .x′),[y. .y′) is obtained by removing repeated entries from (max(x,min(x′, xt)) −
x+ 1,max(y,min(y′, yt))− y + 1)mt=1.

3.1. Distances 23

X: a
1

b
2

b
3

a
4

a
5

b
6

c
7

b
8

Y : a
1

c
2

a
3

b
4

a
5

a
6

b
7

a
8

b
9

Figure 3.1: Consider strings X = abbaabcb and Y = acabaabab and a cost-4 align-
ment A : (1, 1), (2, 2), (3, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 8), (8, 9), (9, 10). The
breakpoints are B(A) = {(2, 2), (3, 3), (7, 8), (8, 8), (9, 10)}; the first 4 breakpoints
correspond to a substitution of X[2] for Y [2], a deletion of Y [3], a deletion of X[7],
and a deletion of Y [8], respectively. Graphically, the alignment is depicted on the
right; the aligned pairs of characters are connected with an edge, and the substituted
pair is highlighted.

Fact 3.1 If an alignment A satisfies X[x . . x′) ∼A Y [y . . y′), then |x−x′|, |y−y′| ≤
width(A) and

|(x′ − x)− (y′ − y)| ≤ ed(X[x . . x′), Y [y . . y′)) ≤ cost(A[x. .x′),[y. .y′)) ≤ cost(A).

4 Streaming algorithm for k-mismatch
pattern matching

“We live by patterns. We die when patterns break.”
Frank Herbert, God Emperor of Dune

In this section, we give an overview of the main ideas of our streaming algorithm
for k-mismatch pattern matching [46].

Let us start with a formal statement of the pattern matching with k mismatches
problem. Let hd(P, S) be the Hamming distance between length m strings P and
S. We say that T [ℓ . . r] is a k-mismatch occurrence of P if hd(P, T [ℓ . . r]) ≤ k, and
we denote the set of the right endpoints of the k-mismatch occurrences of P in T

by occHk (P, T).

Problem 4.1 (k-mismatch pattern matching) Given a pattern P of length m

over an alphabet Σ, a text T of length n over Σ, and an integer k, compute occHk (P, T).

Next, we introduce the notion of the approximate period, or x-period of a string,
which we use to separate our problems into two cases. Let hd(P, T)[i] be hd(P, T [i−
m+ 1 . . i]).

Definition 3 The x-period of a string P of length m is the smallest integer π > 0

such that hd(P [π . .m − 1], P [0 . .m − 1 − π]) ≤ x. (For example, the 1-period of a
string babaa is 2.)

Let ℓ be the 3k-period of the pattern P and as our first of two cases, consider
when ℓ ≤ k. We call this the small approximate period case and as we will see, the
solution for this case contains some of the main ideas on which our other results will
rely.

Fact 4.1 If the 3k-period of the pattern is ℓ, then each two (3k/2)-mismatch occur-
rences of the pattern in the text must be at least ℓ characters apart.

4.1 Small approximate period (ℓ ≤ k) case.

Before we explain the idea of our solution in this case, let us remind the definition
of a run length encoding . A run of a string is simply a maximal substring equal to a

4.1. Small approximate period (ℓ ≤ k) case. 25

power of a character. For example, the runs of a string S = aaabbbbbbcccc are aaa,
bbbbbb, and cccc. Each run can be encoded as a character and the number of times it
repeats (the power). The run length encoding of a string is the concatenation of the
encodings of the runs. For example, the run length encoding of S is (a, 3)(b, 6)(c, 4).

The main new idea of our solution in the small approximate period case is to
reduce the k-mismatch pattern matching problem to O(k2) small instances of run
length encoded pattern matching. There are a number of surprising elements to our
solution. The first one is that in any substring of the text of length 2m we can find
a compressible region that contains all the alignments of the pattern and text with
Hamming distance at most k. The second is that by choosing a suitable partitioning
of the pattern and of this compressible region into O(k) subpatterns and O(k)

subtexts respectively and then run length encoding those, we can ensure that the
total number of runs, summed across all subpatterns and subtexts is only O(k). The
third is that despite there being O(k) subpatterns and O(k) subtexts giving O(k2)

instances of the run length encoded Hamming distance problem, each of which can
take O(k2 log k) time, we show that the time complexity of all the instances sums to
only O(k2 log k). By the same approach, we demonstrate that the working space of
all the instances sums to O(k2). We also need to be careful when recovering the final
Hamming distances because, in the worst case, each final distance is the sum of k
outputs of the run length encoded Hamming distance problem. A naive summation
would therefore result in an additive Ω(k) term per Hamming distance in the time
complexity. To overcome this bottleneck, we take advantage of the compressed
output to reduce the time taken to recover the final distances to O(m + k2 log k)

per text substring of length 2m.
Using a standard trick, we run our algorithm independently on O(n/m) sub-

strings of the text of length 2m, each overlapping the next by m characters. This
results in an offline algorithm (that is, when both the pattern and the text are
given simultaneously), the main steps of which are summarised in Algorithm 1. We
then show that it can be implemented online by running the five steps of the offline
algorithm in parallel.

Algorithm 1 Deterministic offline algorithm for k-mismatch when the pattern has
small approximate period
Require: Pattern P of length m and text T of length 2m

1: Identify a compressible region of T containing all k-mismatch occurrences
2: Partition this region into O(k) subtexts and P into O(k) subpatterns
3: Run-length encode all subpatterns and subtexts
4: Compute run-length encoded Hamming distances for each subpattern/subtext

pair
5: Sum the Hamming distances from previous line

Lemma 4.1 Consider a pattern P of length m, and a text T of length n arriving
online. If the 3k-period of P is smaller than k, then the k-mismatch pattern matching

26 Chapter 4. Streaming algorithm for k-mismatch pattern matching

problem can be solved in O(k2) space and O(nk2 log k/m+ n) time.

4.2 Large approximate period (ℓ > k) case.

For this case, we give two algorithms: a deterministic offline one and a randomised
streaming algorithm. The overall structure of the algorithms is the same:

1. Filter out all alignments of the pattern and text with Hamming distance
greater than 3k/2.

2. Verify whether the Hamming distance is at most k at those positions.

Offline algorithm In the deterministic offline algorithm, the filtering step is
implemented by running Karloff’s (1 + ε)-approximation algorithm [93] with ε =

1/2, excluding all positions which are reported to have Hamming distance greater
than 3k/2. This takes O(log3m) time per character of the text and space O(n).
The verification step is implemented via the kangaroo jumps technique, which takes
O(k) time per character of the text and space O(n) [102]. We need only run the
verification step at alignments that have not been filtered out by the filtering step.
By Fact 4.1 there can be no more than one such alignment for every k consecu-
tive text characters that arrive. It follows that the total amortised time for the
large approximate period case is O(npolylog m). This completes the description of
the deterministic algorithm. Combined with Lemma 4.1, this gives a deterministic
offline algorithm with runtime O(nk2 log k/m+ npolylog m) and space O(n).

Streaming algorithm To establish a randomised streaming algorithm for k-
mismatch pattern matching for the large period case, we need small-space versions
of both the filtering and verification steps. Let us first discuss the verification step.
In the same way as in the deterministic case, after filtering the verification step
will only need to verify at most one potential k-mismatch per k consecutive text
characters. To do this efficiently we maintain a dynamic data structure that allows
us to query the Hamming distance between P and the latest m-length suffix of the
text and will output the exact distance if it is at most k and “No” otherwise. Each
time a new character of the text arrives we perform an update.

Lemma 4.2 For a given pattern P of length m, and an online text T of length n

there is a data structure which answers Hamming distance queries as described
above and uses O(k2polylog m) space, update time O(polylog m), and query time
O(kpolylog m). If the Hamming distance does not exceed 2k, the probability of error
is at most 1/m2.

The key technical innovation, which is set out in Lemma 4.2 is that our data
structure takes only polylog m time to perform an update when a new text character
arrives if no query is performed at that time. We use this asymmetry in query and

4.2. Large approximate period (ℓ > k) case. 27

update times combined with Fact 4.1 to show that the n−m verification steps can be
performed in O(npolylog m) time and O(k2polylog m) space overall. Our solution
for Lemma 4.2 works by first reducing the problem to repeated application of 1-
mismatch, in a similar fashion to Porat and Porat [120] and then in turn reducing
the 1-mismatch problem to the streaming dictionary matching problem. However,
our method differs significantly in technique from [120] both by randomising the first
reduction step and then in our second reduction step which allows us to perform
updates much more quickly than queries.

We now explain how to implement the filtering step. The main new ideas for
our approximation algorithm are a novel randomised length reduction scheme and
a two stage approximation scheme. The general idea is as follows. First, during
preprocessing we reduce the length of the pattern to be only O(k log2m). We then
overcome a particularly significant technical hurdle by showing how to transform
the text in such a way that any Hamming distance between the reduced length
pattern and the transformed text provides a reasonable approximation of the cor-
responding Hamming distance in the original input. Finally we apply an existing
linear space online (1 + ε)-approximation algorithm to the reduced length pattern
and the transformed text to give the final approximate answer. The entire process
is repeated independently in parallel a logarithmic number of times to improve the
error probability. We argue that this approximation of an approximation still gives
us a (1 + ε)-approximation to the true Hamming distance at each alignment with
good probability.

Deamortisation using the tail trick We finally explain how to deamortise our
streaming k-mismatch algorithm with O(nk2 log k/m+npolylog m) run-time to give
us a fast worst-case time streaming algorithm. We first observe that if the pattern
length m is at most 2k2, we can run an existing algorithm [49] which will take
O(

√
k log k) time per character and uses linear space, which in this case is O(k2).

We now proceed under the assumption that m > 2k2.
To deamortise the algorithm, we use a two part partitioning that we call the

tail trick . Similar ideas were also used to deamortise streaming pattern matching
algorithms in [45, 49]. We partition the pattern into two parts: the tail , Pt — the
suffix of P of length 2k2, and the head , Ph — the prefix of P length (m− 2k2) . We
will compute the current Hamming distance, hd(P, T)[i] by summing hd(Pt, T)[i]

and hd(Ph, T)[i − 2k2]. To compute hd(Pt, T)[i] we again use the existing linear
space online k-mismatch algorithm from [49] taking O(

√
k log k) time per character

and O(k2) space.
We also need to make sure that when the i-th character of the text, T [i], arrives,

we will have computed hd(Ph, T)[i− 2k2] in time. To this end we run the amortised
algorithm using pattern Ph. However, we cap the run-time at O(polylog m) per
character. That is, when T [i] arrives we run polylog m steps of the algorithm.
Because the algorithm is amortised, it may lag behind the text stream: When T [i]

arrives, it may still be processing T [i′] for some i′ < i. Fortunately, the lag cannot

28 Chapter 4. Streaming algorithm for k-mismatch pattern matching

exceed 2k2, that is at all times i − i′ ≤ 2k2. This is because we are able to show
that while processing any k2 consecutive text characters the total time complexity
of the algorithm, summed over those consecutive characters is upper bounded by
O(k2 log k) = O(k2polylog m). To allow for the lag in the deamortisation process
we also maintain a buffer containing the most recently arrived 2k2 text characters
and the most recent 2k2 outputs.

The algorithm uses O(k2polylog m) space. The time complexity is the sum of
the complexities for processing Pt and Ph which is O(

√
k log k + polylog m) per

arriving character of the text.

5 Streaming algorithm for k-edit pattern
matching

“The difference between the almost right word and the right word is
really a large matter — ’tis the difference between the lightning bug
and the lightning.”

Mark Twain, in a letter to George Bainton, 1888

In this chapter, we provide an overview of our k-edit pattern matching algorithm
presented in [98].

Let us start with a formal statement of the pattern matching with k edits prob-
lem. We say that T [ℓ . . r] is a k-edit occurrence of P if ed(P, T [ℓ . . r]) ≤ k, and
we denote the set of the right endpoints of the k-edit occurrences of P in T by
occEk (P, T).

Problem 5.1 (k-edit pattern matching) Given a pattern P of length m over an
alphabet Σ, a text T of length n over Σ, and an integer k, compute occEk (P, T).

We consider the problem in the streaming setting, and, in addition, in the asym-
metric streaming setting, where the algorithm can no longer access T [1 . . r) while
processing T [r], but it is given an oracle providing read-only constant-time access
to individual characters of P . This oracle is not counted towards the space com-
plexity of the algorithm. For the semi-streaming setting, we provide a deterministic
solution, whereas our solution for the streaming setting is Monte-Carlo randomized.

5.1 (Semi-)Streaming Algorithm for Pattern Matching
with k Edits

Our algorithms solve a slightly stronger problem: every element r ∈ occEk (P, T) is
augmented with the smallest integer k′ ∈ [0 . . k] such that r ∈ occEk′(P, T). At a
very high-level, we reuse the structure of existing streaming algorithms for exact
pattern matching and the k-mismatch problem [120, 31, 46, 48]. Namely, we con-
sider O(logm) prefixes Pi = P [1 . . ℓi] of exponentially increasing lengths ℓi. The
algorithms are logically decomposed into O(logm) levels, with the ith level receiving
occEk (Pi−1, T) and producing occEk (Pi, T). In other words, the task of the ith level

30 Chapter 5. Streaming algorithm for k-edit pattern matching

is determine which k-edit occurrences of Pi−1 can be extended to k-edit occurrences
of Pi. When the algorithm processes T [r], the relevant positions p ∈ occEk (Pi−1, T)

are those satisfying |r − p − (ℓi − ℓi−1)| ≤ k. Since each p ∈ occEk (Pi−1, T) is re-
ported when the algorithm processes T [p], we need a buffer storing the active k-edit
occurrences of Pi−1 (i.e. those that can still be extended into k-edit occurrences
of Pi). We implement it using a recent combinatorial characterization of k-edit oc-
currences [40], which classifies strings based on the following notion of approximate
periodicity:

Definition 4 A string X is k-periodic if there exists a primitive string Q with
|Q| ≤ |X|/128k such that the edit distance between X and a prefix of Q∞ is at
most 2k. We call Q a k-period of X.

The main message of [40] is that only k-periodic strings may have many k-edit
occurrences.

Corollary 5.1 (of [40, Theorem 5.1]) Let X ∈ Σm, k ∈ [1 . .m], and Y ∈ Σn

with n ≤ 2m. If X is not k-periodic, then |occEk (X,Y)| = O(k2).

In particular, if Pi−1 is not k-periodic, then it has O(k2) active k-edit occur-
rences. For each active occurrence p ∈ occEk (Pi−1, T), we maintain an edit-distance
sketch skEk (T (p . . r]) and combine it with a sketch skEk (P (ℓi−1 . . ℓi]) (constructed
at preprocessing) in order to derive ed(T (p . . r], P (ℓi−1 . . ℓi]) or certify that this
distance exceeds k. Since we have stored the smallest k′ ∈ [0 . . k] such that
p ∈ occEk′(P, T), this lets us check whether any k-edit occurrence of Pi−1 ending
at position p extends to a k-edit occurrence of Pi ending at position r. With pre-
viously known k-edit sketches [20, 90], this already yields an poly(k log n)-space
implementation in this case.

The difficulty lies in k-periodic strings whose occurrences form chains.

Definition 5 (Chain of occurrences) Consider strings X,Y ∈ Σ∗ and an inte-
ger k ∈ Z≥0. An increasing sequence of positions p1, . . . , pc forms a chain of k-edit
occurrences of X in Y if:

1. There is a difference string D ∈ Σ∗ such that D = Y (pj . . pj+1] for j ∈ [1 . . c);

2. There is an integer k′ ∈ [0 . . k] such that pj ∈ occEk′(X,Y) \ occEk′−1(X,Y) for
j ∈ [1 . . c].

Corollary 5.2 (of [40, Theorem 5.2, Claim 5.16, Claim 5.17]) Let X ∈ Σm,
k ∈ [1 . .m], and Y ∈ Σn with n ≤ 2m. If X is k-periodic with period Q, then
occEk (X,Y) can be decomposed into O(k3) chains whose differences are of the form
rots(Q) with |m− s| ≤ 10k.

In the following discussion, assume that Pi−1 is k-periodic with period Qi−1.
Compared to the previous algorithm, we cannot afford maintaining skEk (T (p . . r])

5.1. (Semi-)Streaming Algorithm for Pattern Matching with k Edits 31

for all active p ∈ occEk (P, T). If skEk were a concatenatable sketch (like the k-
mismatch sketches of [48]), we would compute skEk (D) at preprocessing time for
all O(k) feasible chain differences D and then, for any two subsequent positions
pj , pj+1 in a chain with difference D, we could use skEk (D) = skEk (T (pj . . pj+1]) to
transform skEk (T (pj . . r]) into skEk (T (pj+1 . . r]). However, despite extensive research,
no such edit-distance sketch is known, which remains the main obstacle in designing
streaming algorithms for k-edit pattern matching.

Our workaround relies on a novel encoding qGR(X,Y) that, for a pair of strings
X,Y ∈ Σ∗, represents a large class of low-distance edit distance alignments be-
tween X,Y . In the preprocessing phase of our algorithm, we build, for every fea-
sible chain difference D, qGR(P (ℓi−1 . . ℓi], D

∞[1 . . ℓi − ℓi−1]). In the main phase,
for subsequent positions pj ∈ occEk (Pi−1, T) in a chain with difference D, we aim to
build qGR(T (pj . . r], D

∞[1 . . ℓi − ℓi−1]) when necessary, i.e., |r − pj − (ℓi − ℓi−1)| ≤
k. We then combine the two encodings to derive qGR(P (ℓi−1 . . ℓi], T (pj . . r]) and
ed(P (ℓi−1 . . ℓi], T (pj . . r]). Except for such products (transitive compositions), our
encoding supports concatenations, i.e., qGR(X1, Y1) and qGR(X2, Y2) can be com-
bined into qGR(X1X2, Y1Y2). Consequently, it suffices to maintain an encoding
qGR(T (pc . . r], D

∞[1 . . r− pc − k]) (where pc is the rightmost element of the chain).
When necessary, we prepend (j− c) copies of qGR(D,D) (merged by doubling) and
append qGR(ε,D∞(r − pj − k . . ℓi − ℓi−1]) to derive qGR(P (ℓi−1 . . ℓi], D

∞[1 . . ℓi −
ℓi−1]).

In the semi-streaming setting, we extend qGR(T (pc . . r], D
∞[1 . . r − pc − k])

one character at a time using read-only random access to D∞. In the streaming
setting, we cannot afford storing D, so we append the entire difference D in a single
step and utilize a new edit-distance sketch skq that allows retrieving qGR(T (r −
|D| . . r], D) from skq(T (r − |D| . . r]) and skq(D). The sketch skq(D) is constructed
in the preprocessing phase, whereas skq(T (r − |D| . . r]) is built as the algorithm
scans T . Similarly, we can (temporarily) append any of the O(k) prefixes of D that
may arise when qGR(T (pc . . r], D

∞[1 . . r − pc − k]) is necessary. Below, we outline
the ideas behind our two main conceptual and technical contributions: the encoding
qGR(·, ·) and the sketch skq(·).

5.1.1 Greedy Alignments and Encodings

Recall that the encoding qGR(·, ·) needs to support the following three operations:

1. Capped edit distance: given qGR(X,Y), compute ed(X,Y) or certify that
ed(X,Y) is large;

2. Product: given qGR(X,Y) and qGR(Y,Z), retrieve qGR(X,Z);

3. Concatenation: given qGR(X1, Y1), qGR(X2, Y2), retrieve qGR(X1X2, Y1Y2).

Our encoding is parameterized with a threshold k ∈ Z+ such that ed(·, ·) > k is
considered large, and the goal is to achieve Õ(kO(1)) encoding size. In fact, when-
ever ed(X,Y) > k, we shall simply assume that qGRk(X,Y) is undefined (formally,

32 Chapter 5. Streaming algorithm for k-edit pattern matching

qGRk(X,Y) = ⊥). Consequently, products and concatenations will require suffi-
ciently large thresholds in the input encodings so that if either of them is undefined,
the output encoding is also undefined.

In order to support concatenations alone, we could use so-called semi-local edit
distances. For now, suppose that we only need to encode pairs of equal-length
strings.1 Through a sequence of concatenations, we may only extend qGRk(X,Y)

to qGRk(X
′, Y ′) so that X = X ′[ℓ . . r) and Y = Y ′[ℓ . . r). For any alignment A′

of X ′, Y ′ with cost(A′) ≤ k, consider the induced alignment A := A′
[ℓ. .r),[ℓ. .r). Note

that A mimics the behaviour of A′ except that it deletes some characters at the ex-
tremes of X and Y (which A′ aligns outside Y and X, respectively). By Fact 3.1, we
have cost(A) ≤ k and, in particular, A deletes at most k characters at the extremes
of X and Y . If, after performing these deletions, we replace A with an optimal
alignment between the remaining fragments of X and Y , this modification may
only decrease cost(A) and cost(A′). Consequently, it suffices to store the O(k) char-
acters at the extremes of X,Y and the O(k4) edit distances between long fragments
of X and Y . In a sense, this encoding represents O(k4) alignments between X,Y

that are sufficient to derive an optimal alignment of any extension.
The main challenge is to handle products, for which we develop a greedy encod-

ing GRk(X,Y) that compactly represents the following family GAk(X,Y) of greedy
alignments of X,Y .

Definition 6 (Greedy alignment) We say that an alignment A of two strings
X,Y ∈ Σ∗ is greedy if X[x] ̸= Y [y] holds for every (x, y) ∈ B(A) ∩ ([1 . . |X|] ×
[1 . . |Y |]). Given k ≥ 0, we denote by GAk(X,Y) the set of all greedy alignments A
of X,Y satisfying cost(A) ≤ k.

Intuitively, whenever a greedy alignment encounters a pair of matching charac-
ters X[x] and Y [y], it must (greedily) match these characters (it cannot delete X[x]

or Y [y]). As stated below, this restriction does not affect the optimal cost.

Fact 5.1 For two strings X,Y ∈ Σ∗, there is an optimal greedy alignment of X,Y .

For strings X,Y ∈ Σ∗ and an integer k ≥ ed(X,Y), we define a set Mk(X,Y)

of common matches of all alignments A ∈ GAk(X,Y); formally Mk(X,Y) =⋂
A∈GAk(X,Y)MX,Y (A). In our greedy encoding, we shall mask out all the char-

acters involved in the common matches. Below, this transformation is defined for
an arbitrary non-crossing matching of X,Y .

Definition 7 Let M be a non-crossing matching of strings X,Y ∈ Σ∗. We define
XM , Y M to be the strings obtained from X,Y by replacing X[x] and Y [y] with
/∈ Σ for every (x, y) ∈ M . We refer to # as a dummy symbol and to maximal
blocks of #’s as dummy segments.

1Pairs of strings of any lengths can be supported in the same way provided that concatena-
tions require larger input thresholds (compared to the output threshold) to accommodate length
differences.

5.1. (Semi-)Streaming Algorithm for Pattern Matching with k Edits 33

The following lemma proves that masking out common matches does not affect
ed(X,Y) or Mk(X,Y) provided that we enumerate the dummy symbols, that is,
any string Z is transformed to num(Z) by replacing the ith leftmost occurrence of #
with a unique symbol #i /∈ Σ.

Lemma 5.1 Consider strings X,Y ∈ Σ∗, an integer k ≥ ed(X,Y), and a set
M ⊆ Mk(X,Y). Then, ed(X,Y) = ed(num(XM), num(Y M)) and Mk(X,Y) =

Mk(num(XM), num(Y M)).

At the same time, after masking out the common matches, the strings become
compressible. Intuitively, this is because once two greedy alignments converge, they
stay together until they encounter a mismatch. Moreover, when two alignments
proceed in parallel without any mismatch, this incurs a small period (at most 2k)
that is captured by the LZ factorization.

Lemma 5.2 Let M = Mk(X,Y) for strings X,Y ∈ Σ∗ and a positive integer
k ≥ ed(X,Y). Then, |LZ(XM)|, |LZ(Y M)| = O(k2), and XM , Y M contain O(k)

dummy segments.

Consequently, for k ≥ ed(X,Y), we could define the greedy encoding GRk(X,Y)

so that it consists of LZ(XM) and LZ(Y M). Instead, we use a more powerful com-
pressed representation that supports more efficient queries concerning XM and Y M .

Even though GRk(X,Y) is small, GAk(X,Y) may consist of 2Θ(k) alignments,
which is why constructing GRk(X,Y) in poly(k) time is far from trivial. The fol-
lowing combinatorial lemma lets us obtain an O(k5)-time algorithm. Intuitively,
the alignments in GAk(X,Y) can be interpreted as paths in a directed acyclic graph
with O(k5) branching vertices.

Lemma 5.3 For all X,Y ∈ Σ∗ and k ∈ Z+, the set Bk(X,Y) =
⋃

A∈GAk(X,Y)

B(A) is of

size O(k5).

The reason why GRk(X,Y) supports products is that every greedy alignment
of X,Z can be interpreted as a product of a greedy alignment of X,Y and a greedy
alignment of Y,Z.

Definition 8 Consider strings X,Y, Z ∈ Σ∗, an alignment AX,Y of X,Y , an align-
ment AY,Z of Y,Z, and an alignment AX,Z of X,Z. We say that AX,Z is a product
of AX,Y and AY,Z if, for every (x, z) ∈ AX,Z , there is y ∈ [1 . . |Y | + 1] such that
(x, y) ∈ AX,Y and (y, z) ∈ AY,Z .

Lemma 5.4 Consider strings X,Y, Z ∈ Σ∗ and k ∈ Z≥0. Every alignment AX,Z ∈
GAk(X,Z) is a product of alignments AX,Y ∈ GAd(X,Y) and AY,Z ∈ GAd(Y,Z),
where d = 2k + ed(X,Y).

34 Chapter 5. Streaming algorithm for k-edit pattern matching

Hence, GRd(X,Y) and GRd(Y,Z) contain enough information to derive GRk(X,Z).
The underlying algorithm propagates the characters of Y stored in GRd(X,Y)

and GRd(Y, Z) along the matchings Md(Y,Z) and Md(X,Y), respectively. Then,
GRk(X,Z) is obtained by masking out all the characters corresponding to Mk(X,Y).

To support concatenations, we extend the family GAk(X,Y) of greedy align-
ments to a family qGAk(X,Y) of quasi-greedy alignments, which are allowed to
delete a prefix of X or Y in violation of Definition 6. The quasi-greedy encoding
qGRk(X,Y) is defined analogously to GRk(X,Y). Equivalently, qGAk(X,Y) can be
derived from GAk+1($1X, $2Y), where $1 ̸= $2 are sentinel symbols outside Σ, by
taking the alignments induced by X,Y . The latter characterization makes all our
claims regarding GA and GR easily portable to qGA and qGR. In particular, this is
true for the sketches, described in the following subsection for GR only.

5.1.2 Edit Distance Sketches

Recall that we need an edit-distance sketch skE allowing to retrieve GRk(X,Y) from
skEk (X) and skEk (Y) for any strings X,Y ∈ Σ≤n and any threshold k ∈ [0 . . n]. Fur-
thermore, we need to make sure that skEk (S) can be computed given streaming access
to S ∈ Σ≤n, and that the encoding and decoding procedures use poly(k, logn) space.
We devise a novel Õ(k2)-size sketch specifically designed to output qGRk(X,Y). We
note that the Õ(k2) size is optimal for qGRk(X,Y), but we are not aware of a match-
ing lower bound for retrieving ed(X,Y) capped with k.

In a manner similar to the sketches of [20, 90], ours relies on the embedding
of Chakraborty, Goldenberg, and Koucký [36]. The CGK algorithm performs a
random walk over the input string (with forward and stationary steps only). In
abstract terms, such walk can be specified as follows:

Definition 9 (Complete walk) For a string S ∈ Σ∗, we say that (st)
m+1
t=1 is an

m-step complete walk over S if s1 = 1, sm+1 = |S| + 1, and st+1 ∈ {st, st + 1} for
t ∈ [1 . .m].

For any two strings X,Y ∈ Σ∗, the two walks underlying CGK(X) and CGK(Y)

can be interpreted as an edit distance alignment using the following abstract defi-
nition:

Definition 10 The zip alignment of m-step complete walks (xt)
m+1
t=1 and (yt)

m+1
t=1

over X,Y ∈ Σ∗ is obtained by removing repeated entries in (xt, yt)
m+1
t=1 .

The key result of [36] is that the cost of the zip alignment of CGK walks over
X,Y ∈ Σ∗ is O(ed(X,Y)2) with good probability, which is then exploited to derive
a metric embedding (mapping edit distance to Hamming distance) with quadratic
distortion. In our sketch, we also need to observe that the CGK alignment is greedy
and that its width is O(ed(X,Y)) with good probability. The following lemma
provides a complete black-box interface of the properties of the CGK algorithm
utilized in our sketches. It also encapsulates Nisan’s pseudorandom generator [117]
that reduces the number of (shared) random bits.

5.1. (Semi-)Streaming Algorithm for Pattern Matching with k Edits 35

Lemma 5.5 For every constant δ ∈ (0, 1), there exists a constant c and an algo-
rithm W that, given an integer n, a seed r of O(log2 n) random bits, and a string
S ∈ Σ≤n, outputs a 3n-step complete walk W(n, r, S) over S satisfying the following
property for all X,Y ∈ Σ≤n and the zip alignment AW of W(n, r,X) and W(n, r, Y):

Pr
r

AW ∈ GAc·ed(X,Y)2(X,Y)

and

width(AW) ≤ c · ed(X,Y)

 ≥ 1− δ.

Moreover, W is an O(log2 n)-bit streaming algorithm that costs O(n log n) time and
reports any element st ∈ [1 . . |S|] of W(n, r, S) while processing the corresponding
character S[st].

Next, we analyze the structural similarity between AW and any alignment A ∈
GAk(X,Y). Based on Lemma 5.5, we may assume that AW ∈ GAO(k2)(X,Y) and
width(AW) = O(k). Consider the set M = M(A)∩M(AW) of the common matches
of A and AW and the string XM obtained by masking out the underlying characters
of X. Whereas Lemma 5.2 immediately implies that the LZ factorization of XM

consists of O(k4) phrases, a more careful application of the same technique provides
a refined bound of O(k2) phrases. Furthermore, there are O(k) dummy segments
in XM and, if X[x] is not masked out in XM (for some x ∈ [1 . . |X|]), then there
is a breakpoint (x′, y′) ∈ BX,Y (AW) with x′ ∈ [1 . . x] and |LZ(X[x′ . . x])| = O(k).
Intuitively, this means that A and AW diverge only within highly compressible
regions following the breakpoints BX,Y (AW). We call these regions forward contexts
(formally, a forward context is the longest fragment starting at a given position and
satisfying certain compressibility condition). Since our choice of A ∈ GAk(X,Y) was
arbitrary, any two alignments A,A′ ∈ GAk(X,Y) diverge only within these forward
contexts. Hence, in order to reconstruct GRk(X,Y) and, in particular, XMk(X,Y),
the sketch should be powerful enough to retrieve all characters in forward contexts of
breakpoints BX,Y (AW). Even though BX,Y (AW) could be of size Θ(k2), due to the
aforementioned bounds on |LZ(XM)| and the number of dummy segments in XM ,
it suffices to take O(k) among these forward contexts to cover the unmasked regions
of XM and XMk(X,Y). Each context can be encoded in Õ(k) bits, so this paves a
way towards sketches of size Õ(k2).

Nevertheless, while processing a string X ∈ Σ≤n, we only have access to the
string X and the m-complete walk (xt)

m
t=1 = W(n, r,X) over X. In particular, de-

pending on Y , any position in X could be involved in a breakpoint. A naive strategy
would be to build a context encoding CE(X)[1 . .m] that stores at t ∈ [1 . .m] (a
compressed representation of) the forward context starting at X[xt], and then post-
process it using a Hamming-distance sketch. This is sufficiently powerful because
X[xt] ̸= Y [yt] holds for any (xt, yt) ∈ B(AW) (recall that AW is greedy). Unfortu-
nately, this construction does not guarantee any upper bound on hd(CE(X),CE(Y))

in terms of k. (For example, if X is compressible, modifying its final character
affects the entire CE(X).) Hence, we sparsify CE(X) by placing a blank symbol ⊥

36 Chapter 5. Streaming algorithm for k-edit pattern matching

at some positions CE(X)[t] so that just a few forward contexts stored in CE(X)[t]

cover any single position in X.
This brings two further challenges. First, if X[x] is involved in a breakpoint,

then we are only guaranteed that it is covered by some forward context X[p . . q)

of CE(X)[t] (i.e., x ∈ [p . . q)). In particular, the forward context starting at posi-
tion x could extend beyond X[x . . q). Hence, the string CE(X)[t] actually stores
double forward contexts X[p . . r) = X[p . . q)X[q . . r) defined as the concatenation
of the forward contexts of X[p] and X[q]. We expect this double forward con-
text X[p . . r) to cover the entire forward context of X[x]. Unfortunately, this is
not necessarily true if we use the Lempel–Ziv factorization to quantify compress-
ibility: we could have |LZ(X[x . . r))| < |LZ(X[q . . r))| because LZ(·) is not mono-
tone. Instead, we use an ad-hoc compressibility measure defined as maxLZ(S) =

max[ℓ. .r)⊆[1. .|S|] LZ(rev(S[ℓ . . r))). Maximization over substrings guarantees mono-
tonicity, whereas reversal helps designing an efficient streaming algorithm construct-
ing contexts (beyond the scope of this overview).

Another challenge is that the sparsification needs to be consistent between CE(X)

and CE(Y): assuming ed(X,Y) ≤ k, we should have hd(CE(X),CE(Y)) = Õ(k),
which also accounts for mismatches between ⊥ and a stored double forward con-
text. This rules out a naive strategy of covering X from left to right using disjoint
forward contexts: any substitution at the beginning of X could then have a cas-
cade of consequences throughout CE(X). Hence, we opt for a memory-less strategy
that decides on CE(X)[t] purely based on the forward contexts X[xt−1 . . x

′
t−1) and

X[xt . . x
′
t). For example, we could set CE(X)[t] = ⊥ unless the smallest dyadic

interval containing [xt−1 . . x
′
t−1) differs from the smallest dyadic interval contain-

ing [xt . . x
′
t) (a dyadic interval is of the form [i2j . . (i + 1)2j) for some integers

i, j ≥ 0). With this approach, each position of X is covered by at least one and
at most O(log |X|) forward contexts. Furthermore, substituting any character in X

does not have far-reaching knock-on effects. Unfortunately, insertions and deletions
are still problematic as they shift the positions xt. Thus, the decision concerning
CE(X)[t] should be independent of the numerical value of xt. Consequently, in-
stead of looking at the smallest dyadic interval containing [xt . . x

′
t), we choose the

largest t′ such that [xt . . x′t) = [xt . . xt′), and we look at the smallest dyadic interval
containing [t . . t′).

With each forward context X[xt . . x
′
t) retrieved, we also need to determine the

value xt (so that we know which fragment of X we can learn from CE(X)[t]). To
avoid knock-on effects, we actually store differences xt − xu with respect to the
previous index satisfying CE(X)[u] ̸= ⊥. This completes the intuitive description of
the context encoding CE.

Our edit-distance sketch contains the Hamming-distance sketch of CE(X). For
this, we use an existing construction [48], augmented in a black-box manner to
support large alphabets (recall that the each forward contexts takes Õ(k) bits).
Furthermore, to retrieve the starting positions xt (rather than just the differences
xt−xu), we use a hierarchical Hamming-distance sketch similar to those used in [20,
90]. This way, given sketches of X and Y , we can recover all characters that remain

5.1. (Semi-)Streaming Algorithm for Pattern Matching with k Edits 37

unmasked in XMk(X,Y) and Y Mk(X,Y). The tools developed for greedy encodings are
then used to compute ed(X,Y) (or certify ed(X,Y) > k) and to retrieve the greedy
encoding GRk(X,Y). We summarize the properties of the edit-distance sketches
below:

Theorem 5.1 For every constant δ ∈ (0, 1), there is a sketch skEk (parametrized by
integers n ≥ k ≥ 1, an alphabet Σ = [0 . . nO(1)), and a seed of O(log2 n) random
bits) such that:

1. The sketch skEk (S) of a string Σ≤n takes O(k2 log3 n) bits. Given streaming
access to S, it can be constructed in Õ(nk) time using Õ(k2) space.

2. There exists an Õ(k2)-space decoding algorithm that, given skEk (X), skEk (Y) for
X,Y ∈ Σ≤n, with probability ≥ 1−δ outputs GRk(X,Y) and min(ed(X,Y), k+

1). Retrieving GRk(X,Y) costs Õ(k5) time, and computing min(ed(X,Y), k+

1) costs Õ(k3) time.

6 Lower bounds for approximate text in-
dexing

“There are no solutions; there are only trade-offs.”
Ursula K. Le Guin, The Dispossessed

In this section, we present an overview of the lower bounds for approximate
dictionary look-up and text indexing we developed in [51].

6.1 Statements of the problems and existing lower bounds

Let us start with the precise statements of the problems. Many of them have been
considered both in the field of algorithms on strings and in the field of computational
geometry, and sometimes they are known under different names. We try, where
possible, to provide alternative names.

The starting point of our work is approximate text indexing, which can be for-
mally stated as follows (here, we focus on the case of the Hamming distance only):

Problem 6.1 Text indexing with k mismatches
Input: An alphabet Σ, a string T ∈ Σn (referred to as text), an integer k.
Output: A data structure (referred to as text index) that maintains the following
queries: Given a string Q ∈ Σd (referred to as pattern), output a substring / all
substrings of T that are within Hamming distance k from Q.

This problem is closely related to the problem of approximate dictionary look-up
introduced by Minsky and Papert in 1968 [110]. The problem is also known under
the name of k-neighbour .

Problem 6.2 Dictionary look-up with k mismatches (edits)
Input: An alphabet Σ, a set of strings in Σd of total length n (dictionary).
Output: A data structure that given a string Q ∈ Σd, outputs all strings in the
dictionary that are at Hamming (edit) distance ≤ k from Q.

We start by showing conditional lower bounds for approximate dictionary look-
up via a reduction from bichromatic closest pair.

6.2. Embedding from Hamming to edit distance: stoppers transform 39

Problem 6.3 Bichromatic closest pair with mismatches (differences)
Input: A set of n red strings in {0, 1}m and a set of n blue strings in {0, 1}m.
Output: A pair of a red string Sr and a blue string Sb, such that the Hamming (edit)
distance between Sr and Sb is minimized.

Alman and Williams [10] showed that if there is δ > 0 such that for all constant
c > 0, the bichromatic closest pair with mismatches problem, with m = c log n,
can be solved in O(n2−δ) time, then SETH is false. By a standard reduction,
this implies that no algorithm can process a dictionary of n strings of length m in
polynomial time, and subsequently answer dictionary look-up queries with k = Θ(m)

mismatches in O(n1−δ) time.
Another related problem is dictionary look-up with k don’t cares. In this problem,

the query strings may contain up to k don’t care symbols, that is, special characters
that match any character of the alphabet, and the task is to retrieve all dictionary
strings that match the query string. Essentially, it is a parameterized variant of
the partial match problem (see [121] and references therein). The structure of this
problem is very similar to that of approximate dictionary look-up, as each don’t care
symbol in the query string gives |Σ| possibilities for the corresponding symbol in the
dictionary strings. On the other hand, it is simpler, as the positions of the don’t care
symbols are fixed. However, even for this simpler problem all known solutions have
an exponential dependency on k, either in the space complexity or in the query time
(see [105] and references therein). Afshani and Nielsen [8] showed that in general
one cannot avoid this. In more detail, they showed that for 3

√
log n ≤ k = o(log n),

any pointer-machine data structure with query time O(2k/2 + m + occ) requires
Ω(n1+Θ(1/ log k)) space, even for the binary alphabet.

6.2 Embedding from Hamming to edit distance: stop-
pers transform

We start by introducing a deterministic algorithm that we refer to as stoppers trans-
form. The stoppers transform receives a set of binary strings of a fixed length m

and outputs a set of strings of length m′ = O(m logm) such that the edit distance
between the transformed strings is equal to the Hamming distance between the
original strings.

We will apply the transform to binary strings of a fixed length m. We assume
that m is power of two, m = 2q for some integer q. If this is not the case, we
append the strings with an appropriate number of zeros, which does not change the
Hamming distance between them and increases the length by a factor of at most
two.

We fix q characters c1, . . . , cq that do not belong to the binary alphabet {0, 1}.
For each i = 1, 2, . . . , q, we define a string Si = cici . . . ci︸ ︷︷ ︸

6·2i

. We call Si a stopper .

Let X be a string ∈ {0, 1}d, where d = 2q. First, we insert a stopper Sq after
the first 2q−1 symbols of X. Second, we apply the transform recursively to the

40 Chapter 6. Lower bounds for approximate text indexing

strings consisting of the first 2q−1 and the last 2q−1 symbols of X. We summarize
the transform in Algorithm 2.

Algorithm 2 StoppersTransform(X)

1: if q = 0 then
2: return X

3: else
4: X1 = StoppersTransform(X[1, 2q−1])

5: X2 = StoppersTransform(X[2q−1 + 1, 2q])

6: X = X1SqX2

7: return X

Intuitively, when the stoppers transform is applied to two equal-length strings
X,Y , the stoppers prevent an optimal edit distance alignment to match a character
X[i] with a character Y [j], i ̸= j. This obstacle is created on q levels: For example,
when we insert the 0-level stopper S0 we make it disadvantageous to align X[i] with
a character Y [j] such that i ≤ 2q−1 and j > 2q−1, and vice versa. As a consequence,
the edit distance between the transformed strings equals the Hamming distance
between the original strings.

Thanks to the stoppers transform, it suffices to analyse the lower bounds the
Hamming distance, and the lower bounds for the edit distance follow almost auto-
matically. This is a big advantage, as the edit distance is typically much harder to
analyse than the Hamming distance. We note that Rubinstein [125] used a similar
approach to derive a lower bound for bichromatic closest pair with edits from a
lower bound for bichromatic closest pair with mismatches, however his algorithm
was randomised and preserved the distances only approximately.

6.3 Conditional lower bounds for dictionary look-up

The first part of our lower bounds is lower bounds for the RAM model conditional on
SETH. Namely, we apply the stoppers transform to derive conditional lower bounds
for bichromatic closest pair with edits and dictionary look-up with edits from a
conditional lower bound for bichromatic closest pair with mismatches [10]. Namely,
we show that the bichromatic closest pair with edits cannot be solved in strongly
subquadratic time and that any data structure for dictionary look-up with edits
that can be constructed in polynomial time cannot have strongly sublinear query
time. We note that similar lower bounds can be obtained from the lower bound of
Rubinstein for the (1 + ε)-approximate bichromatic closest pair, however our proof
is simpler as it uses only a series of combinatorial reductions instead of the complex
distributed PCP framework. These bounds are tight within polylogarithmic factors
since bichromatic closest pair can be solved in O(n2m2) time and dictionary look-up
with edits can be solved in O(nm2) time. On the other hand, these lower bounds
only hold for k = Θ(log n).

6.4. Pointer-machine lower bounds for dictionary look-up 41

6.4 Pointer-machine lower bounds for dictionary look-up

The pointer machine model focuses on the data structures that solely use pointers
to access memory locations, i.e. no address calculations are allowed. Similarly to
many other lower bound proofs, we use the variant of this model defined in [42].
Consider a reporting problem, such as the text indexing problem for example. Let
U be the universe of possible answers (in the case of text indexing, substrings of
the text), and let the answer to a query Q be a subset S of U . We assume that
the data structure is a rooted tree of constant degree, where each node represents
a memory cell that can store one element of U . Edges of the tree correspond to
pointers between the memory cells. The information beyond the elements of U and
the pointers is not accounted for, it can be stored and accessed for free by the data
structure. Given a query Q, the algorithm must find all the nodes containing the
elements of S. It always starts at the root of the tree and at each step can move
from a node to its child. The number of explored nodes is a lower bound on the
query time, and the size of the tree is a lower bound on the space. We note that
all known data structures for approximate dictionary look-up and text indexing are
pointer machine data structures, in other words, our bounds show that in order to
develop more efficient solutions one would need to come up with a radically new
approach.

For many applications k is relatively small, and one might hope to achieve much
better bounds for this regime. We show that this is probably not the case by
demonstrating a number of pointer-machine lower bounds that give a more precise
dependency between the complexity and the number of mismatches (edits). We start
by showing a lower bound for the problem of dictionary look-up with k mismatches.

Similar to [8], we use the framework of Afshani [7] that gives a pointer machine
lower bound for a problem called geometric stabbing defined on the m-dimensional
Hamming cube. Namely, in this problem we are given a subset Q of points, and a
set R of geometric regions in the cube. We must preprocess R into a data structure,
to support the following queries: given a point P ∈ Q, output all the regions that
contain P . [7, Theorem 1] gives the following pointer machine lower bound for this
problem:

Theorem 6.1 ([7]) Consider a set R of d geometric regions that satisfies the fol-
lowing two conditions for some parameters β, t, and v:

• every point in Q is contained in at least t regions;

• the volume of the intersection of every β regions is at most v.

Then for any pointer-machine data structure, if answering geometric stabbing queries
can be done in time g(d)+O(output), where g is an increasing function and g(d) ≤ t,
then the space used is S(d) = Ω(tv−12−O(β)).

The first part of our proof is to construct a dictionary and a set of queries. To
give some flavour of the proof, we give our definitions of the query set and of the

42 Chapter 6. Lower bounds for approximate text indexing

dictionary below. The set of query strings Q is constructed as follows. A string
P ∈ Q ⊆ {0, 1}m if, when we divide it into k blocks of lengths m/k, k/2 blocks
contain exactly one set bit, and k/2 blocks contain exactly two set bits. Next, we
select the set of strings of the dictionary D and the associated set of regions R,
which are simply the Hamming balls of radius k whose centres are the strings in D.
The dictionary D is defined probabilistically in two steps. First, we construct the
set of strings in {0, 1}m such that if we divide it into blocks of length m/k, each
block contains exactly one set bit. (Note that this is similar to the shape of the
query strings but is not the same.) Second, we apply a sparsification procedure. It
uses two parameters, α and an associated probability pα, and ensures that the size
of D is relatively small, while the distance between any two strings in it is relatively
large (which, intuitively, controls the volume of the intersection of the regions). The
procedure first filters the set of strings defined above by selecting each string in
this set with a probability pα, and then if there are two strings at distance at most
⌊k(1/4− α)⌋ from each other, it deletes both of them. The remaining strings form
the set D.

It is not difficult to see the correspondence between the dictionary look-up prob-
lem for D and Q and the geometric stabbing problem: Reporting the set of regions
in R a string P ∈ Q belongs to is equivalent to reporting the set of dictionary strings
that are at distance at most k from this string. The main part of the proof consists
in proving that R and Q satisfy the hypothesis of Theorem 6.1. Finally, we apply
the theorem and translate the conclusion to our original context. Proving that the
condition of the theorem is met heavily relies on precisely understanding how the
Hamming distance behaves on the special instances we consider. As a consequence,
we show that any data structure for dictionary look-up with k mismatches that has
query time O(m+(lognk)k+occ) requires Ω(ckn) space, for some constant c > 1, for
all even 8√

3

√
log n ≤ k = o(log n). Applying the stoppers transform, we immediately

obtain similar lower bounds for the edit distance.

6.5 Lower bounds for text indexing

Finally, we show a reduction from dictionary look-up to text indexing which gives
us lower bounds for text indexing. The main idea of the reduction is quite simple:
We define the text as the concatenation of the dictionary strings interleaved with
a special gadget string. The gadget string must guarantee that if we align the pat-
tern with a substring that is not in the dictionary, the Hamming distance will be
much larger than k. Via this reduction, the lower bounds for approximate dictio-
nary look-up under the Hamming distance imply that for some value of k, there is
no data structure for text indexing with k mismatches with sublinear query time
unless SETH is false. See a diagram of the reductions in Fig. 2.3. In the pointer
machine model, the reduction implies that any data structure for text indexing with
k mismatches with query time O(m + (logn2k)k + occ) must use Ω(ckn) space, for
some constant c > 1. The bound holds for all even 8√

3

√
log n ≤ k = o(log n).

7 Streaming algorithms for regular ex-
pressions search

“Being able to break a problem into small pieces and recombine them is
one of the essential skills of design.”

Barbara Liskov, Keynote Address

In this section, we give an overview of the main technical ideas we introduced
to design a streaming algorithm for recognition of regular languages [59]. It can be
seen as a (highly non-trivial) application of streaming pattern matching.

7.1 Statements of the problems

Let us start by giving the precise formulation of the problems.

Definition 11 (Regular expression) We define regular expressions over an al-
phabet Σ as well as the languages they match recursively. Let L(R) be the language
matched by a regular expression R.

• Any a ∈ Σ ∪ {ε} is a regular expression and L(a) = {a}.

For two regular expressions A and B, we can form a new expression using one of
the three symbols · (concatenation), | (union), or ∗ (Kleene star):

• A ·B is a regular expression and L(A ·B) = {XY : X ∈ L(A) and Y ∈ L(B)};

• A | B is a regular expression and L(A | B) = L(A) ∪ L(B);

• A∗ is a regular expression and L(A∗) =
⋃

k≥0{X1X2 . . . Xk : Xi ∈ L(A) for 1 ≤
i ≤ k}.

Definition 12 (Thompson automaton [133]) For a regular expression R we de-
fine the Thompson automaton of R, T (R), recursively. This non-deterministic finite
automaton (NFA) accepts all strings s ∈ L(R).

• If R = a ∈ Σ ∪ {ε}, T (R) is constructed as in Figure 7.1a;

44 Chapter 7. Streaming algorithms for regular expressions search

• If R = A ·B, T (R) is constructed as in Figure 7.1b. Namely, the initial state
of T (A) becomes the initial state of T (R), the final state of T (A) becomes the
initial state of T (B), and the final state of T (B) becomes the final state of
T (R);

• If R = A|B, T (R) is constructed as in Figure 7.1c. Namely, the initial state of
T (R) goes via ε-transitions both to the initial state of T (A) and to the initial
state of T (B), and the final states of T (A) and T (B) go via ε-transitions to
the final state of T (R);

• If R = A∗, T (R) is constructed as in Figure 7.1d. Namely, the initial state of
T (R) and the final state of T (A) go via ε-transitions both to the initial state
of T (A), and to the final state of T (R).

Definition 13 (Compact Thompson automaton) Given a Thompson automa-
ton T (R), we define the compact Thompson automaton TC(R) as the automa-
ton obtained from T (R) by replacing every maximal path of transitions labelled by
a1, a2, . . . , ak ∈ Σ by a single transition labelled by a1a2 . . . ak. The non-empty la-
bels of TC(R) are called atomic strings, and the size of the (multiset) of the atomic
strings is defined to be the size of R.

Figure 7.2 gives an example of the Thompson automata for R = b(ab|b)∗ab. We
note that in general the size of a regular expression is much smaller than the total
number of characters in it and is bounded by twice the number of union and Kleene
star symbols plus two. The size of a regular expression measures its “complexity”.

Problem 7.1 Regular expression membership and pattern matching
Input: a string T of length n over an alphabet Σ = {1, 2, . . . , σ}, where σ = nO(1),
and a regular expression R over Σ of size d.
Output (membership): ACCEPT, if T ∈ L(R).
Output (pattern matching): all positions 1 ≤ r ≤ n, such that there exists a position
1 ≤ ℓ ≤ r such that T [ℓ . . r] ∈ L(R).

7.2 Definitions and tools.

Let A1, A2, . . . , Ad be the atomic strings of the regular expression R. We define
Π = {Ai[1 . .min{2j , |Ai|}] : 1 ≤ i ≤ d, 0 ≤ j ≤ ⌈log |Ai|⌉}. The prefixes of Ai’s that
belong to Π are called canonical .

For a string P and a text T , denote by occ(P, T) the set of the ending positions
of the occurrences of P in T .

Definition 14 (Partial occurrence of a regular expression) Consider a string
S. We say that a fragment S[i . . j], where 1 ≤ i ≤ j ≤ |S|, is a partial occurrence
of a regular expression R ending with a prefix P of an atomic string A, if there is a
walk from the initial state of TC(R) to the endpoint of the transition corresponding

7.2. Definitions and tools. 45

istart f
a

(a) T (A) for a ∈ Σ ∪ {ε}

istart f

T (A) T (B)

(b) T (A ·B)

istart f

ε

ε

ε

ε

T (A)

T (B)

(c) T (A|B)

istart f
ε ε

ε

ε

T (A)

(d) T (A∗)

Figure 7.1: Thompson automaton. In each automaton, i and f are the initial and
final states, respectively.

to A such that the concatenation of the labels of the transitions in this walk equals
S[i . . j]A[|P |+ 1 . .].

Definition 15 (Witness) Let P be a canonical prefix of an atomic string, and
r ∈ occ(P, T). We say that r is a witness if T [1 . . r] is a partial occurrence of R

ending with P .

46 Chapter 7. Streaming algorithms for regular expressions search

istart f
ε

ε

ε

ε

ε

εb

a b

b

a b

ε

ε

(a) T (b(ab|b)∗ab)

istart f
ε

ε

ε

ε

ε

εb

ab

b

ab

ε

ε

(b) TC(b(ab|b)∗ab)

Figure 7.2: The Thompson automatons of the regular expression b(ab|b)∗ab.

We also make use of the following well-known fact:

Corollary 7.1 (Of the Fine–Wilf periodicity lemma [64]) If for strings P,X
with X ≤ 2|P | we have |occ(P,X)| > 2, then P is periodic and the set occ(P,X)

can be represented as an arithmetic progression with difference per(P).1

7.3 Overview of the algorithms

We now give an overview of our algorithms. Our solutions for streaming regular
expression membership and pattern matching are very similar, so below we focus
only on the membership variant of the problem.

We can assume that all atomic strings have length at most n, otherwise they
never appear in the text and we can ignore them. Formally, during the preprocessing
phase we delete all transitions (u, v) from TC(R) that are labelled by atomic strings
of lengths larger than n. We also assume that d ≤ n, otherwise we can use the
following solution:

1Note that when |occ(P,X)| ≤ 2, we can represent occ(P,X) as at most two (degenerate)
arithmetic progressions of length 1, we will use this fact to simplify the description of the algorithms.

7.3. Overview of the algorithms 47

Lemma 7.1 Given a streaming text T of length n and a regular expression of size
d ≥ n. Assume that all atomic strings have length at most n each. There is a de-
terministic algorithm that solves the membership and the pattern matching problems
for T and R in O(d2) space and O(d3) time per character of T .

Proof. First note that we can afford storing T in full. Second, we build a compact
trie on the reverses of the atomic strings of R. The trie occupies O(dn) = O(d2)

space. Finally, let F contain all atomic strings A such that there is an ε-transitions
path from the endpoint of the transition labelled by A to the final state of TC(R).

Define an array D of length n+1 = O(d) such that D[0] contains a singleton set
consisting of the starting state of TC(R) and D[r], 1 ≤ r ≤ n, stores all states u such
that u is the end of some transition labelled by an atomic string and T [1 . . r] equals
the concatenation of the labels of the transitions in some walk from the starting state
of TC(R) to u. Assume that we have constructed D[1 . . r]. To compute D[r+1], we
use the trie to find the atomic strings A1, A2, . . . , Aq equal to T [1 . . r+1], T [2 . . r+

1], . . . or T [r + 1] in O(r + q) time. Note that q ≤ d. For each atomic string Ai,
1 ≤ i ≤ q, labelling a transition (v, w), we add w to D[r + 1] if there is a state u

in D[r + 1 − |Ai|] such that there is an ε-transition path from u to v, which can
be checked in O(d) time and space. In total, the algorithm spends O(d3) time to
process a character of T (q = O(d), and for each 1 ≤ i ≤ q the set D[r + 1 − |Ai|]
contains O(d) states). The algorithm reports that T ∈ L(R) if D[n] contains a
state v, which is an endpoint of a transition labelled by some A ∈ F . □

From now on, we assume that all atomic strings have length at most n, and that
d ≤ n.

Intuition: non-periodic case. To give intuition behind our solution, consider
a very simple case when every canonical prefix is not periodic. By Corollary 7.1,
if none of the strings in Π is periodic, we can use the following approach. For
each P ∈ Π and T , we run the streaming pattern matching algorithm [120] and at
any moment store the two most recent witnesses for P discovered by the algorithm.
When the algorithm discovers a new position r ∈ occ(P, T), we must decide whether
it is a witness. Let P = A[1 . .min{2k, |A|}], where A is an atomic string.

If k = 0, we consider the starting node u of the transition in the compact
Thompson automaton TC(R) labelled by A. Suppose that there is an ε-transitions
path from the endpoints of the transitions labelled by atomic strings Ai1 , Ai2 , . . . , Aij

to u. We then check if (r − 1) is a witness for at least one of Ai1 , Ai2 , . . . , Aij . If
it is, then r is a witness. Importantly, if r − 1 is a witness for Aij′ , 1 ≤ j′ ≤ j, it
is the most recent one and is stored in the memory of the instance of the pattern
matching algorithm for Aij′ and T . Suppose now that k ≥ 1. We then must check
whether (r − 2k−1) is a witness for A[1 . . 2k−1]. If it is, then r is a witness for P .
Note that by Corollary 7.1, if (r − 2k−1) is a witness for A[1 . . 2k−1], it is one of
the two most recent ones and will be stored by the pattern matching algorithm for
A[1 . . 2k−1].

48 Chapter 7. Streaming algorithms for regular expressions search

Let F contain all atomic strings A such that there is an ε-transitions path from
the endpoint of the transition labelled by A to the final state of TC(R). In the
regular expression pattern matching problem, we report all positions r such that r

is a witness in occ(A, T) for some A ∈ F . In the regular expression membership
problem, T ∈ L(R) if n is a witness for occ(A, T), for some A ∈ F .

We do not provide the formal analysis of the algorithm, as we only give it for
intuition, but it is easy to see that it uses O(d2 log2 n) space and O(d log2 n) time
per character of the text (recall that we do not account for the time spent during
the preprocessing phase).

General case: main technical contributions. In general, unfortunately, some
of the canonical prefixes are periodic. However, by Corollary 7.1, we obtain that
every r ∈ occ(P, T), where P is a canonical prefix of some atomic string periodic
with period ρ, belongs to a fragment of form (∆(P))k, where ∆(P) = P [|P |−ρ+1 . .]

and k is an integer. Instead of storing the last two witnesses for each canonical prefix,
we would like to store the witnesses in the last two fragments of form (∆(P))k.
However, the number of such witnesses can be large. Our main technical novelty
is a compressed representation of such witnesses. We give a high-level overview
of the approach we use for the membership problem, our solution to the regular
expression pattern matching problem is similar. We show that for each fragment
of form (∆(P))k it suffices to store a small, carefully selected subset of witnesses
that belong to this fragment. The remaining ones can be restored in small space at
request.

Consider a witness r ∈ occ(P, T), where P ∈ Π. By definition, there is a
partition T [1 . . r] = T [ℓ1 . . r1]T [ℓ2 . . r2] . . . T [ℓm . . rm] such that each fragment in
the partition, except for the last one, is an atomic string, and the last one equals
P . Furthermore, by Corollary 7.1, r must belong to some fragment F = T [i . . i +

kρ − 1] = (∆(P))k. Let m′ be the index of the first fragment such that rm′ ≥ i.
Consider the fragment W = T [ℓm′′ . . rm′′], m′ ≤ m′′ ≤ m, containing a position
i+ 2ρ− 1 (we call this position an “anchor”). Note that W is a canonical prefix of
some atomic string and rm′′ ∈ occ(W,T) is a witness. If there are a few witnesses
t ∈ occ(W,T) such that T [t − |W | + 1, t] contains the anchor i + 2ρ − 1, we can
store them explicitly. Otherwise, there is a periodic fragment containing i+2ρ− 1,
and we can recurse for it by choosing a new anchor close to its starting point. We
choose the definition of anchors so that the recursion stops in a logarithmic number
of steps and for some of the anchors there is a witness that we store explicitly for
this anchor.

To summarize, the idea of the compact representation of witnesses that belong
to a fragment of form (∆(P))k is to choose a logarithmic set of anchors close to
the starting point of the fragment, and for each of these anchors to store a constant
number of witnesses for each canonical prefix in Π. Suppose now that r ∈ occ(P, T),
where P is a canonical prefix of an atomic string A, r belongs to a fragment F =

T [i . . i+ kρ− 1] = (∆(P))k. To decide whether it is a witness we use the following

7.3. Overview of the algorithms 49

approach. From above we know that r is a witness iff there is a witness r′ ∈
occ(A′, T), where A′ is an atomic string, that we store in the compact representation
of witness in F , and there is a path in TC(R) from the ending node of the transition
labelled by A′ and to the starting node of the transition labelled by A such that
the concatenation of the strings on the edges of the path equals T [r′ + 1 . . r − |A|]
(which is a substring of (∆(P))k). Unfortunately, it is not clear how to verify this
condition in a straightforward way as we do not have random access neither to ∆(P),
nor to the strings on the edges of TC(R). Instead, using anchors again, we show
that verifying this condition can be reduced to the following question, where G is a
graph of size poly(d, log n):

Problem 7.2 Walks in a weighted graph
Input: a directed multigraph G with non-negative integer weights on edges, two nodes,
and a number x.
Output: ACCEPT, if there is a walk from the first node to the second one of total
weight x.

We show the following theorem:

Theorem 7.1 There exists an algorithm which, given a directed multigraph G with
non-negative integer weights on edges, its two nodes v1, v2, and a number x, decides
if there is a walk from v1 to v2 of total weight x in O((|E(G)|+|V (G)|3)·x·polylog x)

time and O((|E(G)|+|V (G)|3)·polylog x) space and succeeds with probability ≥ 1/2.

Let N = |V (G)|. For the simpler case when the graph is unweighted, we could
use a folklore approach and compute the x-th power of the adjacency matrix in
O(N3 log x) time and O(N2) space. In order to handle arbitrary weights of edges,
we compute the arrays Ck of bit-vectors of length x + 1, where Ck[u, v][d] stores a
bit indicator of whether there exists a walk from u to v in G of at most 2k edges of
total weight exactly d. The following formula holds:

Ck[u, v][d] =
∨

w∈V (G)
i∈{0,...,d}

Ck−1[u,w][i] ∧ Ck−1[w, v][d− i]

Using the fast Fourier transform to compute the convolutions, we obtain an algo-
rithm with time O(N3x log2 x) and space O(N2x).

In our application, x can be equal to n, and the approach above uses Ω(n)

space, which is prohibitive. In order to improve the space complexity, we represent
the above computations as a circuit with binary Or and Convolutionx gates op-
erating on bit-vectors of length x+1. Every element Ck[u, v] requires a separate gate
and while computing its value we need to perform N convolutions, for every possible
intermediate node w, so in total there are O(N3 log x) gates. The Convolutionx

gates store only the first x + 1 bits of the results, as we never need paths of total
weight larger than x. We are interested only in a single bit of output of the circuit,
namely C⌈log x⌉[v1, v2][x]. If there were only Or gates in the circuit, we could store

50 Chapter 7. Streaming algorithms for regular expressions search

only the x-th element at each gate. In order to handle also Convolutionx gates,
we use the discrete Fourier transform over a suitably chosen ring.

We use the technique introduced by Lokshtanov and Nederlof [107] and then
modified by Bringmann [33] to work with numbers modulo p instead of complex
numbers. Informally, they show that if we operate on Zt

p (vectors of length t with
elements in Zp for suitably chosen p and t) instead of the bit-vectors, we can compute
out(C)[x], the x-th element of the output of the circuit C in O(|C| · t · polylog p)

time and O(|C| log p) space. However, there are technical difficulties that we need to
overcome to apply their technique to our solution. The approach of Bringmann [33]
requires that t > x and Zp contains a t-th root of the unity. The main difficulty is
to choose these numbers as small as possible as they directly affect the complexity
of the algorithm. This question was also faced by Bringmann [33], who showed two
variants of the framework, one using the Extended Riemann Hypothesis and the
other unconditional but with polynomially higher time and space, which is not good
enough for our streaming application. By using Bombieri–Vinogradov theorem and
facts about counting primes in arithmetic progressions, we obtain an unconditional
time bound comparable to that of Bringmann that assumes the Extended Riemann
Hypothesis.

8 Language Distance Problem

“You can never understand one language until you understand at least
two.”

Geoffrey Willans

In this section, we give an overview of the small-space algorithms we developed
in [18] for the online language distance problem for two formal languages, palin-
dromes and squares. To develop them, we used, in particular, techniques from the
solutions for streaming k-mismatch and k-edit pattern matching problems.

8.1 Statements of the problems and our results

Let us start with the formal statements of the problems and our results. We study
the complexity of the online and low-distance version of the language distance prob-
lem for two classical languages: the language PAL of all palindromes, where a
palindrome is a string that is equal to its reversed copy, and the language SQ of all
squares, where a square is the concatenation of two copies of a string.

Problem 8.1 k-LHD-PAL (resp. k-LHD-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k + 1, hdi}, where hdi is the minimum
Hamming distance between T [1 . . i] and a string in PAL (resp. in SQ).

Problem 8.2 k-LED-PAL (resp. k-LED-SQ)
Input: A string T of length n and a positive integer k.
Output: For each 1 ≤ i ≤ n, report min{k+1, edi}, where edi is the minimum edit
distance between T [1 . . i] and a string in PAL (resp. in SQ).

We give streaming algorithms which use poly(k, log n) time per character and
poly(k, logn) space for all four problems. While streaming algorithms are extremely
efficient, they are randomized by nature, which means that there is a small proba-
bility that they may produce incorrect results. Motivated by this, we also study the
problems in the read-only model. In this model, we show deterministic algorithms
for the four problems that use poly(k, logn) time per character and poly(k, log n)

extra space (not accounting for the input); see Table 8.1 for a summary. As a

52 Chapter 8. Language Distance Problem

side result of independent interest, we develop the first deterministic read-only al-
gorithms for computing k-mismatch and k-edit occurrences of a pattern in a text
using poly(k, log n) space.

Problem Model Time per character Space
k-LHD-PAL Streaming O(k log3 n) O(k logn)

k-LHD-SQ Streaming Õ(k) O(k log2 n)

k-LHD-PAL/SQ Read-only O(k logn) O(k logn)

k-LED-PAL/SQ Streaming Õ(k2) Õ(k2)

k-LED-PAL/SQ Read-only Õ(k4) (amortised) Õ(k4)

Table 8.1: Summary of the complexities of the algorithms given in [18].

Below, we explain the main ideas behind our streaming algorithms.

8.2 Hamming distance, palindromes, and squares

Due to the self-similarity of palindromes and squares, the Hamming distance from
a string U to PAL and SQ can be measured in terms of the self-similarity of U .

Property 8.1 Each string U ∈ Σm satisfies

hd(U,PAL) = hd(U [. . ⌊m/2⌋], U(⌈m/2⌉ . .]R) = 1

2
hd(U,UR).

Property 8.2 Each string U ∈ Σm satisfies hd(U,SQ) = hd(U [. .m/2], U(m/2 . .])

if m is even and hd(U,SQ) = ∞ if m is odd.

For the rest of this section, let skhdk () denote the k-mismatch sketch [48] and
hdd(X,Y) = min{d+ 1, hd(X,Y)}. Using Property 8.1, we can reduce the k-LHD-
PAL problem to that of computing the threshold Hamming distance between the
current prefix of the input string and its reverse. The algorithm maintains the
sketches skhd2k(T [. . i]) and skhd2k(T [. . i]

R). Upon arrival of T [i], it constructs skhd2k(T [i]),
updates skhd2k(T [. . i]) and skhd2k(T [. . i]

R), and computes d = hd≤2k(T [. . i], T [. . i]
R).

Property 8.1 implies hd≤k(T [. . i],PAL) = ⌈d/2⌉.
The algorithm uses O(k log n) bits, which is nearly optimal: Indeed, by Prop-

erty 8.1, if U = VW , with |V | = |W |, then hd(U,UR) = 2 · hd(V,WR). Therefore,
using a standard reduction from streaming algorithms to one-way communication
complexity protocols, we obtain a lower bound of Ω(k) bits for the space complex-
ity of streaming algorithms for the k-LHD-PAL problem from the Ω(k) bits lower
bound for the communication complexity of the Hamming distance [86].

Our solution for k-LHD-SQ is more involved. Property 8.2 allows us to derive
hd≤k(T [. . 2i],SQ) from the sketches skhdk (T [. . i]) and skhdk (T [. . 2i]): we can com-
bine them to obtain skhdk (T (i . . 2i]), and a distance computation on skhdk (T [. . i]) and
skhdk (T (i . . 2i]) returns hd≤k(T [. . i], T (i . . 2i]) = hd≤k(T [. . 2i],SQ).

8.3. Edit distance, palindromes, and squares 53

Naively applying this procedure requires storing the sketch skhdk (T [. . i]) until the
algorithm has read T [. . 2i], that is, storing Θ(n) sketches at the same time. To
reduce the number of sketches stored, we use a filtering procedure based on the
following observation:

Observation 8.1 If hd(T [. . 2i],SQ) ≤ k and ℓ ∈ [1 . . i], then i+ ℓ is a k-mismatch
occurrence of T [. . ℓ], that is, hd(T [. . ℓ], T (i . . i+ ℓ]) ≤ k.

Example 8.1 For k = 1, ℓ = 2, and i = 3, the string T [. . 6] = abcacc is a 1-
mismatch square (by Property 8.2) and the fragment T (3 . . 5] = ac is a 1-mismatch
occurrence of the prefix T [. . 2] = ab.

Observation 8.1 motivates our filtering procedure: if we choose some prefix P =

T [. . ℓ] of the string, we only need to store every i ≥ ℓ such that i+ℓ is a k-mismatch
occurrence of P . Clifford, Kociumaka and Porat [48] showed a data structure S that
exploits the structure of such occurrences and stores them using O(k log2 n) bits of
space while allowing reporting the occurrence at position i + ℓ when T [i + ℓ + ∆]

is pushed into S — we say that S reports the k-mismatch occurrences of P in T

with a fixed delay ∆ [48]. Our algorithm needs to receive the occurrence at position
i+ ℓ when T [2i] is pushed into the stream, i.e., we require S to report occurrences
with non-decreasing delays. We present a modification of the data structure [48]
to allow non-decreasing delays, and use it to implement a space-efficient streaming
algorithm for k-LHD-SQ.

8.3 Edit distance, palindromes, and squares

Similar to the Hamming distance, we show that the edit distance from a string U

to PAL or SQ can be expressed in terms of “self-similarity” of U . This allows us
to use similar approaches as for the Hamming distance problems, where tools for
the Hamming distance are replaced by appropriate tools for the edit distance. By
replacing the Hamming distance sketch with the edit distance sketch of [22], we
obtain streaming algorithms for k-LED-PAL and (1 + ε)-k-ED-PAL. Furthermore,
the results of [22] show a reduction from the edit distance to the Hamming distance
via locally consistent string decompositions, which allows us to solve k-LED-SQ in
streaming by reducing to k-LHD-SQ.

Bibliography

[1] European nucleotide archive. https://www.ebi.ac.uk/ena/browser/about/
statistics. Accessed: 2025-07-24. (Cited on page 4.)

[2] Sequence read archive. https://www.ncbi.nlm.nih.gov/sra/docs/
sragrowth/. Accessed: 2025-07-24. (Cited on page 4.)

[3] Software Heritage Project. https://www.softwareheritage.org/. Accessed:
2025-07-24. (Cited on page 4.)

[4] A. Abboud and K. Bringmann. Tighter connections between formula-SAT
and shaving logs. In Proceedings of ICALP 2018, volume 107 of LIPIcs, pages
8:1–8:18, 2018. (Cited on page 18.)

[5] A. Abboud, T. D. Hansen, V. V. Williams, and R. Williams. Simulating
branching programs with edit distance and friends: Or: A polylog shaved is
a lower bound made. In Proceedings of STOC 2016, pages 375—-388, 2016.
(Cited on page 7.)

[6] K. R. Abrahamson. Generalized string matching. SIAM J. Comput.,
16(6):1039–1051, 1987. (Cited on page 6.)

[7] P. Afshani. Improved pointer machine and I/O lower bounds for simplex range
reporting and related problems. Int. J. Comput. Geometry Appl., 23(4-5):233–
252, 2013. (Cited on pages 14 and 41.)

[8] P. Afshani and J. S. Nielsen. Data structure lower bounds for document
indexing problems. In Proceedings of ICALP 2016, volume 55 of LIPIcs, pages
93:1–93:15, 2016. (Cited on pages 14, 39 and 41.)

[9] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to biblio-
graphic search. Communications of the ACM, 18(6):333–340, 1975. (Cited on
page 17.)

[10] J. Alman and R. Williams. Probabilistic polynomials and Hamming nearest
neighbors. In Proceedings of FOCS 2015, pages 136–150, 2015. (Cited on
pages 14, 15, 39 and 40.)

https://www.ebi.ac.uk/ena/browser/about/statistics
https://www.ebi.ac.uk/ena/browser/about/statistics
https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/
https://www.softwareheritage.org/

Bibliography 55

[11] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic
local alignment search tool. Molecular Biology, 215(3):403–410, 1990. (Cited
on page 7.)

[12] A. Amir, M. Lewenstein, and E. Porat. Faster algorithms for string matching
with k mismatches. Journal of Algorithms, 50(2):257–275, 2004. (Cited on
pages 6 and 11.)

[13] A. Amir and B. Porat. Approximate on-line palindrome recognition, and
applications. In Proceedings of CPM 2014, volume 8486 of LNCS, pages 21–
29, 2014. (Cited on page 19.)

[14] A. Babu, N. Limaye, J. Radhakrishnan, and G. Varma. Streaming algorithms
for language recognition problems. Theor. Comput. Sci., 494:13–23, 2013.
(Cited on page 15.)

[15] A. Backurs and P. Indyk. Edit distance cannot be computed in strongly
subquadratic time (unless SETH is false). In Proceedings of STOC 2015,
pages 51—-58, 2015. (Cited on page 7.)

[16] A. Backurs and P. Indyk. Which regular expression patterns are hard to
match? In Proceedings of FOCS 2016, pages 457–466. IEEE Computer Society,
2016. (Cited on page 17.)

[17] O. Barkol and Y. Rabani. Tighter lower bounds for nearest neighbor search
and related problems in the cell probe model. J. Comput. Syst. Sci., 64(4):873–
896, June 2002. (Cited on page 14.)

[18] G. Bathie, T. Kociumaka, and T. Starikovskaya. Small-space algorithms for
the online language distance problem for palindromes and squares. In Proceed-
ings of ISAAC 2023, volume 283 of LIPIcs, pages 10:1–10:17, 2023. (Cited on
pages 19, 20, 51 and 52.)

[19] G. Bathie and T. Starikovskaya. Property testing of regular languages with
applications to streaming property testing of visibly pushdown languages. In
Proceedings of ICALP 2021, volume 198 of LIPIcs, pages 119:1–119:17, 2021.
(Cited on page 15.)

[20] D. Belazzougui and Q. Zhang. Edit distance: Sketching, streaming, and doc-
ument exchange. In Proceedings of FOCS 2016, pages 51–60, 2016. (Cited on
pages 12, 30, 34 and 36.)

[21] P. Berenbrink, F. Ergün, F. Mallmann-Trenn, and E. S. Azer. Palindrome
recognition in the streaming model. In Proceedings of STACS 2014, volume 25,
pages 149–161, 2014. (Cited on page 19.)

[22] S. Bhattacharya and M. Koucký. Locally consistent decomposition of strings
with applications to edit distance sketching. In Proceedings of STOC 2023,
pages 219–232, 2023. (Cited on pages 13 and 53.)

56 Bibliography

[23] S. Bhattacharya and M. Koucký. Streaming k-edit approximate pattern
matching via string decomposition. In ICALP 2023, volume 261 of LIPIcs,
pages 22:1–22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
(Cited on page 12.)

[24] P. Bille. New algorithms for regular expression matching. In 2006 Inter-
national Colloquium on Automata, Languages, and Programming (ICALP),
volume 4051 of Lecture Notes in Computer Science, pages 643–654. Springer,
2006. (Cited on page 17.)

[25] P. Bille and M. Farach-Colton. Fast and compact regular expression matching.
Theoretical Computer Science, 409(3):486–496, 2008. (Cited on page 17.)

[26] P. Bille and M. Thorup. Faster regular expression matching. In Proceedings of
ICALP 2009, volume 5555 of LNTCS, pages 171–182. Springer, 2009. (Cited
on page 17.)

[27] P. Bille and M. Thorup. Regular expression matching with multi-strings and
intervals. In Proceedings of SODA 2010, pages 1297–1308, 2010. (Cited on
pages 17 and 18.)

[28] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proceedings of STOC 1999,
pages 312–321, 1999. (Cited on page 14.)

[29] D. Breslauer. Saving comparisons in the Crochemore–Perrin string-matching
algorithm. Theoretical Computer Science, 158(1):177–192, 1996. (Cited on
page 5.)

[30] D. Breslauer and Z. Galil. Real-time streaming string-matching. ACM Trans-
action on Algorithms, 10(4):22:1–22:12, 2014. (Cited on page 5.)

[31] D. Breslauer and Z. Galil. Real-time streaming string-matching. ACM Trans.
Algorithms, 10(4):22:1–22:12, 2014. (Cited on pages 18 and 29.)

[32] D. Breslauer, R. Grossi, and F. Mignosi. Simple real-time constant-space
string matching. Theoretical Computer Science, 483:2–9, 2013. Special Issue
Combinatorial Pattern Matching 2011. (Cited on page 5.)

[33] K. Bringmann. A near-linear pseudopolynomial time algorithm for subset
sum. In Proceedings of SODA 2017, pages 1073–1084, 2017. (Cited on pages 19
and 50.)

[34] K. Bringmann, A. Grønlund, and K. G. Larsen. A dichotomy for regular
expression membership testing. In Proceedings of FOCS 2017, pages 307–318,
2017. (Cited on pages 17 and 18.)

Bibliography 57

[35] K. Bringmann and M. Künnemann. Quadratic conditional lower bounds for
string problems and dynamic time warping. In Proceedings of FOCS 2015,
pages 79–97, 2015. (Cited on page 7.)

[36] D. Chakraborty, E. Goldenberg, and M. Koucký. Streaming algorithms for
embedding and computing edit distance in the low distance regime. In Pro-
ceedings of STOC 2016, pages 712–725, 2016. (Cited on page 34.)

[37] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong. Compressed
indexes for approximate string matching. Algorithmica, 58(2):263–281, Octo-
ber 2010. (Cited on page 8.)

[38] H.-L. Chan, T.-W. Lam, W.-K. Sung, S.-L. Tam, and S.-S. Wong. A linear size
index for approximate pattern matching. J. of Discrete Algorithms, 9(4):358
– 364, 2011. (Cited on page 8.)

[39] T. M. Chan, S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat. Approx-
imating text-to-pattern Hamming distances. In Proceedings of STOC 2020,
pages 643–656, 2020. (Cited on pages 6 and 11.)

[40] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster approximate
pattern matching: A unified approach. In Proceedings of FOCS 2020, pages
978–989, 2020. (Cited on pages 7, 13 and 30.)

[41] P. Charalampopoulos, T. Kociumaka, and P. Wellnitz. Faster pattern match-
ing under edit distance : A reduction to dynamic puzzle matching and the
seaweed monoid of permutation matrices. In Proceedings of FOCS 2022, pages
698–707. IEEE, 2022. (Cited on page 7.)

[42] B. Chazelle. Lower bounds for orthogonal range searching: I. The reporting
case. J. ACM, 37(2):200–212, Apr. 1990. (Cited on page 41.)

[43] N. Chomsky and M. Schützenberger. The algebraic theory of context-free
languages. In Computer Programming and Formal Systems, volume 35 of
Studies in Logic and the Foundations of Mathematics, pages 118–161. Elsevier,
1963. (Cited on page 16.)

[44] P. Clifford and R. Clifford. Simple deterministic wildcard matching. Informa-
tion Processing Letters, 101(2):53–54, 2007. (Cited on page 17.)

[45] R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya. Dictionary
matching in a stream. In Proceedings of ESA 2015, volume 9294 of LNCS,
pages 361–372, 2015. (Cited on pages 18 and 27.)

[46] R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya. The k-
mismatch problem revisited. In Proceedings of SODA 2016, pages 2039–2052,
2016. (Cited on pages 6, 9, 10, 11, 12, 20, 24 and 29.)

58 Bibliography

[47] R. Clifford, M. Jalsenius, and B. Sach. Cell-probe bounds for online edit
distance and other pattern matching problems. In Proceedings of SODA 2015,
pages 552–561, 2015. (Cited on page 7.)

[48] R. Clifford, T. Kociumaka, and E. Porat. The streaming k-mismatch problem.
In Proceedings of SODA 2019, pages 1106–1125, 2019. (Cited on pages 9, 11,
12, 13, 18, 29, 31, 36, 52 and 53.)

[49] R. Clifford and B. Sach. Pseudo-realtime pattern matching: Closing the gap.
In Proceedings of CPM 2010, volume 6129 of LNTCS, pages 101–111, 2010.
(Cited on page 27.)

[50] A. L. Cobbs. Fast approximate matching using suffix trees. In Proceedings of
CPM 1995, LNCS, pages 41–54, 1995. (Cited on page 8.)

[51] V. Cohen-Addad, L. Feuilloley, and T. Starikovskaya. Lower bounds for text
indexing with mismatches and differences. In Proceedings of SODA 2019,
pages 1146–1164, 2019. (Cited on pages 13, 14, 15, 16, 20 and 38.)

[52] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of STOC 2004, pages 91–100, 2004.
(Cited on pages 7, 8 and 12.)

[53] R. Cole and R. Hariharan. Approximate string matching: A simpler faster
algorithm. SIAM J. Comput., 31(6):1761–1782, 2002. (Cited on page 7.)

[54] R. Cole and R. Hariharan. Verifying candidate matches in sparse and wildcard
matching. In Proceedings of STOC 2002, page 592–601, 2002. (Cited on
page 17.)

[55] M. Crochemore. String-matching on ordered alphabets. Theoretical Computer
Science, 92(1):33–47, 1992. (Cited on page 5.)

[56] M. Crochemore and D. Perrin. Two-way string-matching. J. ACM,
38(3):650–674, July 1991. (Cited on page 5.)

[57] M. Crochemore and W. Rytter. Periodic prefixes in texts. In Sequences II,
pages 153–165, 1993. (Cited on page 5.)

[58] M. Crochemore and W. Rytter. Squares, cubes, and time-space efficient string
searching. Algorithmica, 13(5):405–425, 1995. (Cited on page 5.)

[59] B. Dudek, P. Gawrychowski, G. Gourdel, and T. Starikovskaya. Streaming
regular expression membership and pattern matching. In Proceedings of SODA
2022, pages 670–694, 2022. (Cited on pages 18, 20 and 43.)

[60] F. Ergun, H. Jowhari, and M. Sağlam. Periodicity in streams. In Proceedings
of APPROX-RANDOM 2010, pages 545–559, 2010. (Cited on page 5.)

Bibliography 59

[61] S. Faro and T. Lecroq. The exact online string matching problem: A review
of the most recent results. ACM Comput. Surv., 45(2), Mar. 2013. (Cited on
page 3.)

[62] S. Faro, T. Lecroq, S. Borzì, S. D. Mauro, and A. Maggio. The string matching
algorithms research tool. https://smart-tool.github.io/smart/. Accessed:
2025-07-22. (Cited on page 3.)

[63] S. Faro, T. Lecroq, S. Borzì, S. D. Mauro, and A. Maggio. The string matching
algorithms research tool. In Proceedings of the PSC 2016, pages 99–111, 2016.
(Cited on page 3.)

[64] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Pro-
ceedings of the American Mathematical Society, 16:109–114, 1965. (Cited on
page 46.)

[65] M. J. Fischer and M. S. Paterson. String-matching and other products. Tech-
nical report, Massachusetts Institute of Technology, USA, 1974. (Cited on
page 17.)

[66] N. François, F. Magniez, M. de Rougemont, and O. Serre. Streaming property
testing of visibly pushdown languages. In ESA 2016, volume 57 of LIPIcs,
pages 43:1–43:17, 2016. (Cited on page 15.)

[67] Z. Galil. Open problems in stringology. In Combinatorial Algorithms on
Words, pages 1–8, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg. (Cited
on page 17.)

[68] M. Ganardi, D. Hucke, D. König, M. Lohrey, and K. Mamouras. Automata
theory on sliding windows. In Proceedings of STACS 2018, volume 96 of
LIPIcs, pages 31:1–31:14, 2018. (Cited on page 15.)

[69] M. Ganardi, D. Hucke, and M. Lohrey. Querying regular languages over sliding
windows. In Proceedings of FSTTCS 2016, volume 65 of LIPIcs, pages 18:1–
18:14, 2016. (Cited on page 15.)

[70] M. Ganardi, D. Hucke, and M. Lohrey. Randomized sliding window algorithms
for regular languages. In Proceedings of ICALP 2018, volume 107 of LIPIcs,
pages 127:1–127:13, 2018. (Cited on page 15.)

[71] M. Ganardi, D. Hucke, and M. Lohrey. Sliding window algorithms for regular
languages. In Proceedings of LATA 2018, volume 10792, pages 26–35, 2018.
(Cited on page 15.)

[72] M. Ganardi, D. Hucke, M. Lohrey, K. Mamouras, and T. Starikovskaya. Reg-
ular languages in the sliding window model. TheoretiCS, 4, 2025. (Cited on
page 15.)

https://smart-tool.github.io/smart/

60 Bibliography

[73] M. Ganardi, D. Hucke, M. Lohrey, and T. Starikovskaya. Sliding window
property testing for regular languages. In ISAAC 2019, volume 149 of LIPIcs,
pages 6:1–6:13, 2019. (Cited on page 15.)

[74] M. Ganardi, A. Jeż, and M. Lohrey. Sliding windows over context-free lan-
guages. In Proceedings of MFCS 2018, volume 117 of LIPIcs, pages 15:1–15:15,
2018. (Cited on page 15.)

[75] M. N. Garofalakis, R. Rastogi, and K. Shim. Mining sequential patterns with
regular expression constraints. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 14(3):530–552, 2002. (Cited on page 16.)

[76] P. Gawrychowski, O. Merkurev, A. M. Shur, and P. Uznanski. Tight tradeoffs
for real-time approximation of longest palindromes in streams. Algorithmica,
81(9):3630–3654, 2019. (Cited on page 19.)

[77] P. Gawrychowski and T. Starikovskaya. Streaming dictionary matching with
mismatches. Algorithmica, 84(4):896–916, 2022. (Cited on pages 12 and 13.)

[78] P. Gawrychowski and P. Uznański. Towards unified approximate pattern
matching for Hamming and L_1 distance. In Proceedings of ICALP 2018,
volume 107 of LIPIcs, pages 62:1–62:13, 2018. (Cited on page 6.)

[79] L. Gąsieniec, W. Plandowski, and W. Rytter. Constant-space string matching
with smaller number of comparisons: sequential sampling. In Proceedings of
CPM 1995, pages 78–89, 1995. (Cited on page 5.)

[80] L. Gąsieniec, W. Plandowski, and W. Rytter. The zooming method: a recur-
sive approach to time-space efficient string-matching. Theoretical Computer
Science, 147(1):19–30, 1995. (Cited on page 5.)

[81] S. Golan, T. Kociumaka, T. Kopelowitz, and E. Porat. The streaming k-
mismatch problem: Tradeoffs between space and total time. In Proceedings of
CPM 2020, volume 161 of LIPIcs, pages 15:1–15:15, 2020. (Cited on pages 9
and 11.)

[82] S. Golan, T. Kopelowitz, and E. Porat. Towards optimal approximate stream-
ing pattern matching by matching multiple patterns in multiple streams. In
Proceedings of ICALP 2018, volume 107 of LIPIcs, pages 65:1–65:16, 2018.
(Cited on pages 9, 11 and 18.)

[83] S. Golan, T. Kopelowitz, and E. Porat. Streaming pattern matching with d

wildcards. Algorithmica, 81(5):1988–2015, 2019. (Cited on page 18.)

[84] S. Golan and E. Porat. Real-time streaming multi-pattern search for constant
alphabet. In Proceedings of ESA 2017, volume 107 of LIPIcs, pages 41:1–41:15,
2017. (Cited on page 18.)

Bibliography 61

[85] E. Grigorescu, E. Sadeqi Azer, and S. Zhou. Streaming for aibohphobes:
Longest palindrome with mismatches. In Proceedings of FSTTCS 2018, vol-
ume 93, pages 31:1–31:13, 2018. (Cited on page 19.)

[86] W. Huang, Y. Shi, S. Zhang, and Y. Zhu. The communication complexity of
the Hamming distance problem. Information Processing Letters, 99(4):149–
153, 2006. (Cited on pages 9 and 52.)

[87] T. N. D. Huynh, W.-K. Hon, T.-W. Lam, and W.-K. Sung. Approximate string
matching using compressed suffix arrays. J. Theor. Comput. Sci., 352(1):240–
249, Mar. 2006. (Cited on page 8.)

[88] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. J. of Computer
and System Sciences, 62(2):367–375, 2001. (Cited on pages 7 and 14.)

[89] P. Indyk. Faster algorithms for string matching problems: matching the con-
volution bound. In Proceedings of FOCS 1998, page 166, 1998. (Cited on
page 17.)

[90] C. Jin, J. Nelson, and K. Wu. An improved sketching bound for edit distance.
In Proceedings of STACS 2021, volume 187 of LIPIcs, pages 45:1–45:16, 2021.
(Cited on pages 30, 34 and 36.)

[91] T. Johnson, S. M. Muthukrishnan, and I. Rozenbaum. Monitoring regular
expressions on out-of-order streams. In Proceedings of ICDE 2007, pages 1315–
1319, 2007. (Cited on page 16.)

[92] A. Kalai. Efficient pattern-matching with don’t cares. In Proceedings of SODA
2002, page 655–656, 2002. (Cited on page 17.)

[93] H. Karloff. Fast algorithms for approximately counting mismatches. J. of
Information Processing Letters, 48(2):53–60, 1993. (Cited on page 26.)

[94] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM J. of R&D, 31(2):249–260, 1987. (Cited on pages 5 and 11.)

[95] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton: multitouch
gestures as regular expressions. In Proceedings of CHI 2012, page 2885–2894,
2012. (Cited on page 16.)

[96] S. C. Kleene. Representation of events in nerve nets and finite automata.
RAND Corporation, Santa Monica, CA, 1951. (Cited on page 16.)

[97] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in
strings. SIAM Journal on Computing, 6(2):323–350, 1977. (Cited on page 3.)

[98] T. Kociumaka, E. Porat, and T. Starikovskaya. Small-space and streaming
pattern matching with k edits. In Proceedings of FOCS 2021, pages 885–896.
IEEE, 2021. (Cited on pages 12, 13, 20 and 29.)

62 Bibliography

[99] S. Kosaraju. Efficient string matching. 1987. (Cited on page 6.)

[100] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and J. S. Turner. Algorithms
to accelerate multiple regular expressions matching for deep packet inspection.
In Proceedings of SIGCOMM 2006, page 339–350, 2006. (Cited on page 16.)

[101] T.-W. Lam, W.-K. Sung, and S.-S. Wong. Improved approximate string
matching using compressed suffix data structures. J. Algorithmica, 51(3):298–
314, Jul 2008. (Cited on page 8.)

[102] G. M. Landau and U. Vishkin. Efficient string matching with k mismatches.
Theoretical Computer Science, 43:239–249, 1986. (Cited on pages 6 and 26.)

[103] G. M. Landau and U. Vishkin. Fast parallel and serial approximate string
matching. J. Algorithms, 10(2):157–169, 1989. (Cited on page 7.)

[104] LeetCode. Problem 139. Word break. https://leetcode.com/problems/
word-break/. (Cited on page 17.)

[105] M. Lewenstein, J. I. Munro, V. Raman, and S. V. Thankachan. Less space:
Indexing for queries with wildcards. Theoretical Computer Science, 557:120 –
127, 2014. (Cited on page 39.)

[106] Q. Li and B. Moon. Indexing and querying XML data for regular path expres-
sions. In Proceedings of VLDB 2001, page 361–370, 2001. (Cited on page 16.)

[107] D. Lokshtanov and J. Nederlof. Saving space by algebraization. In Proceedings
of STOC 2010, pages 321–330, 2010. (Cited on pages 19 and 50.)

[108] F. Magniez, C. Mathieu, and A. Nayak. Recognizing well-parenthesized ex-
pressions in the streaming model. SIAM J. Comput., 43(6):1880–1905, 2014.
(Cited on page 15.)

[109] W. J. Masek and M. S. Paterson. A faster algorithm computing string edit dis-
tances. Journal of Computer and System Sciences, 20(1):18–31, 1980. (Cited
on page 7.)

[110] M. Minsky and S. A. Papert. Perceptrons: An introduction to computational
geometry. MIT press, 1969. (Cited on page 38.)

[111] P. Muir, S. Li, S. Lou, D. Wang, D. Spakowicz, L. Salichos, J. Zhang, G. We-
instock, F. Isaacs, J. Rozowsky, and M. Gerstein. The real cost of sequenc-
ing: Scaling computation to keep pace with data generation. Genome Biology,
17(1), Mar. 2016. Publisher Copyright: © 2016 Muir et al. (Cited on page 5.)

[112] M. Murata. Extended path expressions of XML. In Proceedings of PODS
2001, page 126–137, 2001. (Cited on page 16.)

[113] E. W. Myers. A four Russians algorithm for regular expression pattern match-
ing. Journal of the ACM, 39(2):432–448, Apr. 1992. (Cited on page 17.)

https://leetcode.com/problems/word-break/
https://leetcode.com/problems/word-break/

Bibliography 63

[114] E. W. Myers. What’s behind Blast, pages 3–15. Springer London, 2013. (Cited
on page 7.)

[115] G. Navarro. A guided tour to approximate string matching. ACM Comput.
Surv., 33(1):31–88, Mar. 2001. (Cited on page 6.)

[116] G. Navarro and M. Raffinot. Fast and simple character classes and bounded
gaps pattern matching, with application to protein searching. In Proceedings
of RECOMB 2001, page 231–240, 2001. (Cited on page 16.)

[117] N. Nisan. Pseudorandom generators for space-bounded computation. Comb.,
12(4):449–461, 1992. (Cited on page 34.)

[118] C. Noam. Systems of syntactic analysis. Journal of Symbolic Logic,
18:242–256, 1958. (Cited on page 16.)

[119] R. Nussinov and A. B. Jacobson. Fast algorithm for predicting the secondary
structure of single-stranded RNA. Proceedings of the National Academy of
Sciences of the United States of America, 77 11:6309–13, 1980. (Cited on
page 1.)

[120] B. Porat and E. Porat. Exact and approximate pattern matching in the
streaming model. In Proceedings of FOCS 2009, pages 315–323, 2009. (Cited
on pages 5, 9, 10, 18, 27, 29 and 47.)

[121] M. Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM J.
Comput., 40(3):827–847, June 2011. (Cited on pages 15 and 39.)

[122] J. Radoszewski and T. Starikovskaya. Streaming k-mismatch with error cor-
recting and applications. In Proceedings of DCC 2017, pages 290–299, 2017.
(Cited on pages 9, 10 and 11.)

[123] J. Radoszewski and T. Starikovskaya. Streaming k -mismatch with er-
ror correcting and applications. Journal of Information and Computation,
271:104513, 2020. (Cited on pages 9 and 10.)

[124] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal
of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.
(Cited on page 11.)

[125] A. Rubinstein. Hardness of approximate nearest neighbor search. In Proceed-
ings of STOC 2018, pages 1260–1268, 2018. (Cited on pages 14, 15 and 40.)

[126] W. Rytter. On maximal suffixes and constant-space linear-time versions of
KMP algorithm. Theoretical Computer Science, 299(1):763 – 774, 2003. (Cited
on page 5.)

[127] B. Saha. Fast & space-efficient approximations of language edit distance and
RNA folding: An amnesic dynamic programming approach. In Proceedings of
FOCS 2017, pages 295–306. IEEE Computer Society, 2017. (Cited on page 1.)

64 Bibliography

[128] S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching
of patterns using a labeling paradigm (extended abstract). In Proceedings of
FOCS 1996, pages 320–328, 1996. (Cited on page 7.)

[129] A. Sandelin, W. Alkema, P. Engström, W. W. Wasserman, and B. Lenhard.
Jaspar: an open-access database for eukaryotic transcription factor bind-
ing profiles. Nucleic acids research, 32(suppl_1):D91–D94, 2004. (Cited on
page 10.)

[130] P. Schepper. Fine-grained complexity of regular expression pattern matching
and membership. In Proceedings of ESA 2020, volume 173 of LIPIcs, pages
80:1–80:20, 2020. (Cited on page 18.)

[131] P. H. Sellers. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4):359 – 373, 1980. (Cited on page 7.)

[132] T. Starikovskaya. Communication and streaming complexity of approximate
pattern matching. In CPM 2017, volume 78 of LIPIcs, pages 13:1–13:11, 2017.
(Cited on pages 12 and 13.)

[133] K. Thompson. Programming techniques: regular expression search algorithm.
Communication of ACM, 11(6):419–422, 1968. (Cited on pages 16 and 43.)

[134] D. Tsur. Fast index for approximate string matching. J. Discrete Algorithms,
8:339–345, 2010. (Cited on page 8.)

[135] D. Tunkelang. Retiring a great interview prob-
lem. https://thenoisychannel.com/2011/08/08/
retiring-a-great-interview-problem/, 2011. (Cited on page 17.)

[136] E. Ukkonen. Approximate string-matching over suffix trees. In Proceedings of
CPM 1993, volume 684 of LNCS, pages 228–242, 1993. (Cited on page 8.)

[137] P. Weiner. Linear pattern matching algorithms. In Proceedings of SWAT 1973,
pages 1–11, 1973. (Cited on page 3.)

[138] X. Xia. Position weight matrix, gibbs sampler, and the associated significance
tests in motif characterization and prediction. Scientifica, 2012(1):917540,
2012. (Cited on page 10.)

[139] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H. Katz. Fast and memory-
efficient regular expression matching for deep packet inspection. In Proceedings
of ANCS 2006, pages 93–102, 2006. (Cited on page 16.)

[140] S. Zacchiroli. Why Software Heritage is creating a global soft-
ware archive. https://www.polytechnique-insights.com/en/columns/
economy/source-code-building-a-universal-software-archive/. Ac-
cessed: 2025-07-24. (Cited on page 4.)

https://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem/
https://thenoisychannel.com/2011/08/08/retiring-a-great-interview-problem/
https://www.polytechnique-insights.com/en/columns/economy/source-code-building-a-universal-software-archive/
https://www.polytechnique-insights.com/en/columns/economy/source-code-building-a-universal-software-archive/

Bibliography 65

ABSTRACT

This habilitation thesis focuses on algorithms and data structures for the fundamental
problem of pattern matching and its diverse applications. Traditionally, pattern matching
has been central in domains where data can be represented as text, such as
bioinformatics, information retrieval, and digital security. Yet, modern data in these areas
poses new challenges: inputs are increasingly massive, fragmented, noisy, or
continuously evolving. To address these challenges, this thesis develops the foundations
of algorithms and data structures for pattern matching and its applications for such
complex forms of data. Its goals are twofold: to deepen our understanding of the
computational limits of these problems, and to design efficient methods that can have
impact in bioinformatics, information retrieval, and digital security.

RÉSUMÉ

Cette habilitation à diriger des recherches porte sur les algorithmes et les structures de
données pour le problème fondamental de la recherche de motifs et ses diverses
applications. Traditionnellement, la recherche de motifs a occupé une place centrale dans
des domaines où les données peuvent être représentées sous forme de texte, tels que la
bioinformatique, la recherche d’information et la sécurité numérique. Cependant, les
données modernes dans ces domaines posent de nouveaux défis : elles sont de plus en
plus massives, fragmentées, bruitées ou en évolution constante. Pour relever ces défis,
cette thèse développe les fondements des algorithmes et des structures de données pour
la recherche de motifs et ses applications pour ces formes complexes de données. Ses
objectifs sont doubles : approfondir notre compréhension des bornes inférieures sur la
complexité de ces problèmes et concevoir des méthodes efficaces pouvant avoir un
impact en bioinformatique, en recherche d’information et en sécurité numérique.

	Research trajectory
	Introduction
	Modern-day challenges
	Massive string data
	Noisy or scattered data

	Contributions of the author
	Streaming pattern matching
	Lower bounds for approximate text indexing
	Formal languages membership

	Organisation of the thesis

	Preliminaries
	Distances

	Streaming algorithm for k-mismatch pattern matching
	Small approximate period case.
	Large approximate period (> k) case.

	Streaming algorithm for k-edit pattern matching
	(Semi-)Streaming Algorithm for Pattern Matching with k Edits
	Greedy Alignments and Encodings
	Edit Distance Sketches

	Lower bounds for approximate text indexing
	Statements of the problems and existing lower bounds
	Embedding from Hamming to edit distance: stoppers transform
	Conditional lower bounds for dictionary look-up
	Pointer-machine lower bounds for dictionary look-up
	Lower bounds for text indexing

	Streaming algorithms for regular expressions search
	Statements of the problems
	Definitions and tools.
	Overview of the algorithms

	Language Distance Problem
	Statements of the problems and our results
	Hamming distance, palindromes, and squares
	Edit distance, palindromes, and squares

	Bibliography

